-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_measurements.py
executable file
·109 lines (91 loc) · 5.23 KB
/
process_measurements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/python3
"""
Generate all the different figures and tables from the key experiments.
"""
from figures import *
from measurements import *
def create_heatmaps(exp, image_name, title, exp_title):
all_data = []
scenario_id = 1
for scenario_name, dbname in exp:
scenario = get_attenuations(dbname)
heatmap(scenario,
title + ": " + exp_title.format(scenario_id, scenario_name),
image_name.format(scenario_id, scenario_name.lower()))
scenario_id += 1
all_data += scenario
heatmap(all_data,
title + ": " + exp_title.format(scenario_id, "All combined"),
image_name.format(scenario_id, "all"))
def create_precision_recall(exp, image_name, exp_title):
data_200530 = []
data_200613 = []
data_200813 = []
data_200918 = []
data_201214 = []
data_our = []
for _, dbname in exp:
data_200530 += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION_200530)
data_200613 += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION_200613)
data_200813 += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION_200813)
data_200918 += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION_200918)
data_201214 += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION)
data_our += get_attenuations(dbname, compensation=MODEL_RX_TX_COMPENSATION_OUR)
#precision_recall(data_200530, 30, 80, title=exp_title+": precision/recall for all scenarios (200530)", filename=image_name.format("200530"))
precision_recall(data_200613, 30, 80, title=exp_title+": precision/recall for all scenarios (200613)", filename=image_name.format("200613"))
precision_recall(data_200813, 30, 80, title=exp_title+": precision/recall for all scenarios (200813)", filename=image_name.format("200813"))
precision_recall(data_200918, 30, 80, title=exp_title+": precision/recall for all scenarios (200918)", filename=image_name.format("200918"))
precision_recall(data_201214, 30, 80, title=exp_title+": precision/recall for all scenarios (201214)", filename=image_name.format("201214"))
precision_recall(data_our, 30, 80, title=exp_title+": precision/recall for all scenarios (our measurements)", filename=image_name.format("our"))
precision_recall_table(data_200918, 30, 80)
def create_precision_recall_en(exp, image_name, exp_title):
data_amin_gmin = []
data_amin_gavg = []
data_aavg_gmin = []
data_aavg_gavg = []
for _, dbname in exp:
data_amin_gmin += get_attenuations_en(dbname, att='min', gtd='min')
data_amin_gavg += get_attenuations_en(dbname, att='min', gtd='avg')
data_aavg_gmin += get_attenuations_en(dbname, att='avg', gtd='min')
data_aavg_gavg += get_attenuations_en(dbname, att='avg', gtd='avg')
precision_recall(data_amin_gmin, 30, 80, title=exp_title+": prec./recall, all scenarios (att min/gtd min)", filename=image_name.format("amingmin"))
precision_recall(data_amin_gavg, 30, 80, title=exp_title+": prec./recall, all scenarios (att min/gtd avg)", filename=image_name.format("amingavg"))
precision_recall(data_aavg_gmin, 30, 80, title=exp_title+": prec./recall, all scenarios (att avg/gtd min)", filename=image_name.format("aavggmin"))
precision_recall(data_aavg_gavg, 30, 80, title=exp_title+": prec./recall, all scenarios (att avg/gtd avg)", filename=image_name.format("aavggavg"))
if __name__ == "__main__":
exp05 = [
('Lunch', 'exp05-epfl-soldiers/scenario01-lunch.sqlite'),
('Train', 'exp05-epfl-soldiers/scenario02-train.sqlite'),
('Office', 'exp05-epfl-soldiers/scenario03-office.sqlite'),
('Queue', 'exp05-epfl-soldiers/scenario04-queue.sqlite'),
('Party', 'exp05-epfl-soldiers/scenario05-party.sqlite'),
]
create_heatmaps(exp05, "figures/exp05s{:02d}-{}", "Experiment 05", "Social Experiment, Scenario {:02d} '{}' (EPFL)")
create_precision_recall(exp05, "figures/exp05-pr-{}", "Experiment 05")
#data_e05_rounded = []
#for att, gtd in data_e05:
# data_e05_rounded.append((att, round(gtd*2)/2))
#boxplot(data_e05_rounded, title="Experiment 05: Attenuation vs. Distance", ylabel="Attenuation [dB]", xlabel="Distance [m]", filename="figures/exp05-box")
exp34 = [
('Lunch', 'exp34-epfl-soldiers/scenario01-lunch.sqlite'),
('Train', 'exp34-epfl-soldiers/scenario02-train.sqlite'),
('Office', 'exp34-epfl-soldiers/scenario03-office.sqlite'),
('Queue', 'exp34-epfl-soldiers/scenario04-queue.sqlite'),
('Party', 'exp34-epfl-soldiers/scenario05-party.sqlite'),
('Movement', 'exp34-epfl-soldiers/scenario06-movement.sqlite'),
]
create_heatmaps(exp34, "figures/exp34s{:02d}-{}", "Experiment 34", "Social Experiment, Scenario {:02d} '{}' (EPFL)")
create_precision_recall(exp34, "figures/exp34-pr-{}", "Experiment 34")
exp34en = [
('Lunch', 'exp34-epfl-soldiers/scenario01-lunch.json'),
('Train', 'exp34-epfl-soldiers/scenario02-train.json'),
('Office', 'exp34-epfl-soldiers/scenario03-office.json'),
('Queue', 'exp34-epfl-soldiers/scenario04-queue.json'),
('Party', 'exp34-epfl-soldiers/scenario05-party.json'),
('Movement', 'exp34-epfl-soldiers/scenario06-movement.json'),
]
create_precision_recall_en(exp34en, "figures/exp34-pr-en-{}", "Exp34, EN data")
#data_e34_rounded = []
#for att, gtd in data_e34:
# data_e34_rounded.append((att, round(gtd*2)/2))
#boxplot(data_e34_rounded, title="Experiment 34: Attenuation vs. Distance", ylabel="Attenuation [dB]", xlabel="Distance [m]", filename="figures/exp34-box")