-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfast_io.py
225 lines (193 loc) · 9.45 KB
/
fast_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import numpy as np
import struct
from itertools import takewhile
def load_output(filename):
"""Load a FAST binary or ascii output file
Parameters
----------
filename : str
filename
Returns
-------
data : ndarray
data values
info : dict
info containing:
- name: filename
- description: description of dataset
- attribute_names: list of attribute names
- attribute_units: list of attribute units
"""
assert os.path.isfile(filename), "File, %s, does not exists" % filename
with open(filename, 'r') as f:
try:
f.readline()
except UnicodeDecodeError:
return load_binary_output(filename)
return load_ascii_output(filename)
def load_ascii_output(filename):
with open(filename) as f:
info = {}
info['name'] = os.path.splitext(os.path.basename(filename))[0]
# Header is whatever is before the keyword `time`
in_header = True
header = []
while in_header:
l = f.readline()
if not l:
raise Exception('Error finding the end of FAST out file header. Keyword Time missing.')
in_header = (l + ' dummy').lower().split()[0] != 'time'
if in_header:
header.append(l)
else:
info['description'] = header
info['attribute_names'] = l.split()
info['attribute_units'] = [unit[1:-1] for unit in f.readline().split()]
# Data, up to end of file or empty line (potential comment line at the end)
data = np.array([l.strip().split() for l in takewhile(
lambda x: len(x.strip()) > 0, f.readlines())]).astype(float)
return data, info
def load_binary_output(filename, use_buffer=True):
"""
03/09/15: Ported from ReadFASTbinary.m by Mads M Pedersen, DTU Wind
24/10/18: Low memory/buffered version by E. Branlard, NREL
Info about ReadFASTbinary.m:
% Author: Bonnie Jonkman, National Renewable Energy Laboratory
% (c) 2012, National Renewable Energy Laboratory
%
% Edited for FAST v7.02.00b-bjj 22-Oct-2012
"""
def fread(fid, n, type):
fmt, nbytes = {
'uint8': ('B', 1),
'int16': ('h', 2),
'int32': ('i', 4),
'float32': ('f', 4),
'float64': ('d', 8)}[type]
return struct.unpack(fmt * n, fid.read(nbytes * n))
def freadRowOrderTableBuffered(fid, n, type_in, nCols, nOff=0, type_out='float64'):
"""
Reads of row-ordered table from a binary file.
Read `n` data of type `type_in`, assumed to be a row ordered table of `nCols` columns.
Memory usage is optimized by allocating the data only once.
Buffered reading is done for improved performances (in particular for 32bit python)
`nOff` allows for additional column space at the begining of the storage table.
Typically, `nOff=1`, provides a column at the beginning to store the time vector.
@author E.Branlard, NREL
"""
fmt, nbytes = {
'uint8': (
'B', 1), 'int16': (
'h', 2), 'int32': (
'i', 4), 'float32': (
'f', 4), 'float64': (
'd', 8)}[type_in]
nLines = int(n / nCols)
GoodBufferSize = 4096 * 40
nLinesPerBuffer = int(GoodBufferSize / nCols)
BufferSize = nCols * nLinesPerBuffer
nBuffer = int(n / BufferSize)
# Allocation of data
data = np.zeros((nLines, nCols + nOff), dtype=type_out)
# Reading
try:
nIntRead = 0
nLinesRead = 0
while nIntRead < n:
nIntToRead = min(n - nIntRead, BufferSize)
nLinesToRead = int(nIntToRead / nCols)
Buffer = np.array(struct.unpack(fmt * nIntToRead, fid.read(nbytes * nIntToRead)))
Buffer = Buffer.reshape(-1, nCols)
data[nLinesRead:(nLinesRead + nLinesToRead), nOff:(nOff + nCols)] = Buffer
nLinesRead = nLinesRead + nLinesToRead
nIntRead = nIntRead + nIntToRead
except Exception:
raise Exception('Read only %d of %d values in file: %s' % (nIntRead, n, filename))
return data
FileFmtID_WithTime = 1 # % File identifiers used in FAST
FileFmtID_WithoutTime = 2
FileFmtID_NoCompressWithoutTime = 3
FileFmtID_ChanLen_In = 4 # time channel and channel length is not included
with open(filename, 'rb') as fid:
FileID = fread(fid, 1, 'int16')[0] # ; % FAST output file format, INT(2)
if FileID not in [FileFmtID_WithTime, FileFmtID_WithoutTime,
FileFmtID_ChanLen_In, FileFmtID_NoCompressWithoutTime]:
raise Exception('FileID not supported {}. Is it a FAST binary file?'.format(FileID))
if FileID == FileFmtID_ChanLen_In:
LenName = fread(fid, 1, 'int16')[0] # Number of characters in channel names and units
else:
LenName = 10 # default number of characters per channel name
NumOutChans = fread(fid, 1, 'int32')[0] # ; % The number of output channels, INT(4)
NT = fread(fid, 1, 'int32')[0] # ; % The number of time steps, INT(4)
if FileID == FileFmtID_WithTime:
TimeScl = fread(fid, 1, 'float64') # ; % The time slopes for scaling, REAL(8)
TimeOff = fread(fid, 1, 'float64') # ; % The time offsets for scaling, REAL(8)
else:
TimeOut1 = fread(fid, 1, 'float64') # ; % The first time in the time series, REAL(8)
TimeIncr = fread(fid, 1, 'float64') # ; % The time increment, REAL(8)
if FileID == FileFmtID_NoCompressWithoutTime:
ColScl = np.ones(NumOutChans)
ColOff = np.zeros(NumOutChans)
else:
ColScl = fread(fid, NumOutChans, 'float32') # ; % The channel slopes for scaling, REAL(4)
ColOff = fread(fid, NumOutChans, 'float32') # ; % The channel offsets for scaling, REAL(4)
LenDesc = fread(fid, 1, 'int32')[0] # ; % The number of characters in the description string, INT(4)
DescStrASCII = fread(fid, LenDesc, 'uint8') # ; % DescStr converted to ASCII
DescStr = "".join(map(chr, DescStrASCII)).strip()
ChanName = [] # initialize the ChanName cell array
for iChan in range(NumOutChans + 1):
ChanNameASCII = fread(fid, LenName, 'uint8') # ; % ChanName converted to numeric ASCII
ChanName.append("".join(map(chr, ChanNameASCII)).strip())
ChanUnit = [] # initialize the ChanUnit cell array
for iChan in range(NumOutChans + 1):
ChanUnitASCII = fread(fid, LenName, 'uint8') # ; % ChanUnit converted to numeric ASCII
ChanUnit.append("".join(map(chr, ChanUnitASCII)).strip()[1:-1])
# %-------------------------
# % get the channel time series
# %-------------------------
nPts = NT * NumOutChans # ; % number of data points in the file
if FileID == FileFmtID_WithTime:
PackedTime = fread(fid, NT, 'int32') # ; % read the time data
cnt = len(PackedTime)
if cnt < NT:
raise Exception('Could not read entire %s file: read %d of %d time values' % (filename, cnt, NT))
if use_buffer:
# Reading data using buffers, and allowing an offset for time column (nOff=1)
if FileID == FileFmtID_NoCompressWithoutTime:
data = freadRowOrderTableBuffered(fid, nPts, 'float64', NumOutChans, nOff=1, type_out='float64')
else:
data = freadRowOrderTableBuffered(fid, nPts, 'int16', NumOutChans, nOff=1, type_out='float64')
else:
# NOTE: unpacking huge data not possible on 32bit machines
if FileID == FileFmtID_NoCompressWithoutTime:
PackedData = fread(fid, nPts, 'float64') # ; % read the channel data
else:
PackedData = fread(fid, nPts, 'int16') # ; % read the channel data
cnt = len(PackedData)
if cnt < nPts:
raise Exception('Could not read entire %s file: read %d of %d values' % (filename, cnt, nPts))
data = np.array(PackedData).reshape(NT, NumOutChans)
del PackedData
if FileID == FileFmtID_WithTime:
time = (np.array(PackedTime) - TimeOff) / TimeScl
else:
time = TimeOut1 + TimeIncr * np.arange(NT)
# %-------------------------
# % Scale the packed binary to real data
# %-------------------------
if use_buffer:
# Scaling Data
for iCol in range(NumOutChans):
data[:, iCol + 1] = (data[:, iCol + 1] - ColOff[iCol]) / ColScl[iCol]
# Adding time column
data[:, 0] = time
else:
# NOTE: memory expensive due to time conversion, and concatenation
data = (data - ColOff) / ColScl
data = np.concatenate([time.reshape(NT, 1), data], 1)
info = {'name': os.path.splitext(os.path.basename(filename))[0],
'description': DescStr,
'attribute_names': ChanName,
'attribute_units': ChanUnit}
return data, info