-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
239 lines (196 loc) · 7.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
'''
Created on 19. dec. 2016
@author: mmpe
'''
from wetb.utils.geometry import mean_deg, rad, tand, sind, deg, cosd
import numpy as np
from scipy.signal import detrend
def wsp_dir2uv(wsp, dir, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v
Parameters
----------
wsp : array_like
Horizontal wind speed
dir : array_like
Wind direction
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
"""
if dir_ref is None:
dir = dir[:] - mean_deg(dir[:])
else:
dir = dir[:] - dir_ref
u = np.cos(rad(dir)) * wsp[:]
v = -np.sin(rad(dir)) * wsp[:]
return np.array([u, v])
def wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal, dir_ref=None):
r"""Convert horizontal wind speed and direction to u,v,w
Parameters
----------
wsp : array_like
- if wsp_horizontal is True: Horizontal wind speed, $\sqrt{u^2+v^2}$\n
- if wsp_horizontal is False: Wind speed, $\sqrt{u^2+v^2+w^2}$
dir : array_like
Wind direction
tilt : array_like
Wind tilt
wsp_horizontal : bool
See wsp
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
v wind component
"""
wsp, dir, tilt = wsp[:], dir[:], tilt[:]
if wsp_horizontal:
w = tand(tilt) * wsp
u, v = wsp_dir2uv(wsp, dir, dir_ref)
else:
w = sind(tilt) * wsp
u, v = wsp_dir2uv(np.sqrt(wsp ** 2 - w ** 2), dir, dir_ref)
return np.array([u, v, w])
def xyz2uvw(x, y, z, left_handed=True):
"""Convert sonic x,y,z measurements to u,v,w wind components
Parameters
----------
x : array_like
Sonic x component
y : array_like
Sonic x component
z : array_like
Sonic x component
left_handed : boolean
if true (default), xyz are defined in left handed coodinate system (default for some sonics)
if false, xyz are defined in normal right handed coordinate system
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
w wind component
"""
x, y, z = map(np.array, [x, y, z])
if left_handed:
y *= -1
theta = deg(np.arctan2(np.mean(y), np.mean(x)))
SV = cosd(theta) * y - sind(theta) * x
# SUW = cosd(theta) * x + sind(theta) * y
#
# #% rotation around y of tilt
# tilt = deg(np.arctan2(np.mean(z), np.mean(SUW)))
# SU = SUW * cosd(tilt) + z * sind(tilt);
# SW = z * cosd(tilt) - SUW * sind(tilt);
SU = cosd(theta) * x + sind(theta) * y
SW = z
return np.array([SU, SV, SW])
def abvrel2xyz_old(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero: Parallel to pitot tube. Positive: Flow from wind side (pressure side)
beta : array_like
Pitot tube side slip angle [rad]. Zero: Parallel to pitot tube. Positive: Flow from root side
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component towards pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=float)
beta = np.array(beta, dtype=float)
vrel = np.array(vrel, dtype=float)
sign_vsx = -((np.abs(beta) > np.pi / 2) * 2 - 1) # +1 for |beta| < 90, -1 for |beta|>90
sign_vsy = np.sign(alpha) # + for alpha > 0
sign_vsz = -np.sign(beta) # - for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 +
1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 +
1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return x, y, z
def abvrel2xyz(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
x : parallel to pitot tube, direction pitot tube root to tip, i.e. normal flow gives negative x\n
y : component in alpha plane
z : component in beta plane
For typical usage where pitot tube is mounted on leading edge:\n
x: Opposite rotational direction\n
y: Direction of mean wind\n
z: From blade root to tip\n
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero for flow towards pitot tube. Positive around z-axis. I.e.
negative alpha (normal flow) gives positive y component
beta : array_like
Pitot tube side slip angle [rad]. Zero for flow towards pitot tube. Positive around y-axis. I.e.
Positive beta (normal flow due to expansion and position in front of blade) gives positive z
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component away from pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=float)
beta = np.array(beta, dtype=float)
vrel = np.array(vrel, dtype=float)
sign_vsx = ((np.abs(beta) > np.pi / 2) * 2 - 1) # -1 for |beta| < 90, +1 for |beta|>90
sign_vsy = -np.sign(alpha) # - for alpha > 0
sign_vsz = np.sign(beta) # for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 +
1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 +
1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return np.array([x, y, z]).T
def detrend_uvw(u, v=None, w=None):
# def _detrend(wsp):
# if wsp is None:
# return None
# dwsp = np.atleast_2d(wsp.copy().T).T
# t = np.arange(dwsp.shape[0])
# A = np.vstack([t, np.ones(len(t))]).T
# for i in range(dwsp.shape[1]):
# trend, offset = np.linalg.lstsq(A, dwsp[:, i])[0]
# dwsp[:, i] = dwsp[:, i] - t * trend + t[-1] / 2 * trend
# return dwsp.reshape(wsp.shape)
def _detrend(y):
if y is None:
return None
return detrend(y)
return [_detrend(uvw) for uvw in [u, v, w]]