-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_env.py
63 lines (56 loc) · 1.77 KB
/
test_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
########################################################################
# This script tests the jackal navigation environment with random action
########################################################################
import os
import json
import pickle
from os.path import join, dirname, abspath, exists
import sys
sys.path.append(dirname(dirname(abspath(__file__))))
import gym
import random
import numpy as np
import envs.registration
from envs.wrappers import ShapingRewardWrapper
def main():
env = gym.make(
id='motion_control_continuous_laser-v0',
world_name='BARN/world_192.world',
gui=True,
init_position=[-2, 2, np.pi/2],
goal_position=[0, 10, 0],
time_step=0.2,
slack_reward=0,
success_reward=10,
collision_reward=-10,
failure_reward=0,
max_collision=1
)
env = ShapingRewardWrapper(env)
env.reset()
done = False
count = 0
ep_count = 0
ep_rew = 0
high = env.action_space.high
low = env.action_space.low
bias = (high + low) / 2
scale = (high - low) / 2
while ep_count < 5:
actions = 2*(np.random.rand(env.action_space.shape[0]) - 0.5)
actions *= scale
actions += bias
count += 1
obs, rew, done, info = env.step(actions)
ep_rew += rew
p = env.gazebo_sim.get_model_state().pose.position
print('current episode: %d, current step: %d, time: %.2f, X position: %f(world_frame), Y position: %f(world_frame), rew: %f, collision: %d' %(ep_count, count, info["time"], p.x, p.y, rew, info["collision"]))
print("actions: ", actions)
if done:
ep_count += 1
env.reset()
count = 0
ep_rew = 0
env.close()
if __name__ == '__main__':
main()