-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathlx_bot_3.py
executable file
·283 lines (238 loc) · 11.7 KB
/
lx_bot_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# coding:utf-8
__version__ = '0.1.0'
__author__ = 'XuJing'
__tfVersion__ = '1.5.0'
__pyVersion__ = '3.6.X'
import sys
import numpy as np
import tensorflow as tf
from tensorflow.contrib.legacy_seq2seq.python.ops import seq2seq
import word_token
import jieba
import random
"""
参数配置,根据自己的业务场景和需求调整
"""
# 输入序列长度
input_seq_len = 50
# 输出序列长度
output_seq_len = 50
# 空值填充0
PAD_ID = 0
# 输出序列起始标记
GO_ID = 1
# 结尾标记
EOS_ID = 2
# LSTM神经元size
size = 8
# 初始学习率
init_learning_rate = 1
# 在样本中出现频率超过这个值才会进入词表
min_freq = 10
# 训练的轮数
train_round = 10000
wordToken = word_token.WordToken()
# 放在全局的位置,为了动态算出num_encoder_symbols和num_decoder_symbols
max_token_id = wordToken.load_file_list(['samples/question.txt', 'samples/answer.txt'], min_freq)
num_encoder_symbols = max_token_id + 5 #表示encoder_inputs中的整数词id的数目
num_decoder_symbols = max_token_id + 5
def get_id_list_from(sentence):
"""
获取输入句子的分词对应id列表
"""
sentence_id_list = []
seg_list = jieba.cut(sentence)
for str in seg_list:
id = wordToken.word2id(str)
if id:
sentence_id_list.append(wordToken.word2id(str))
return sentence_id_list
def get_train_set():
"""
获取问答语句,并处理成id list:[[question_id_list,answer_id_list]]
"""
global num_encoder_symbols, num_decoder_symbols
train_set = []
with open('samples/question.txt', 'r',encoding='utf-8') as question_file:
with open('samples/answer.txt', 'r',encoding='utf-8') as answer_file:
while True:
question = question_file.readline()
answer = answer_file.readline()
if question and answer:
question = question.strip()
answer = answer.strip()
question_id_list = get_id_list_from(question)
answer_id_list = get_id_list_from(answer)
if len(question_id_list) > 0 and len(answer_id_list) > 0:
answer_id_list.append(EOS_ID)
train_set.append([question_id_list, answer_id_list])
else:
break
return train_set
def get_samples(train_set, batch_num):
"""
构造样本数据
:return:
encoder_inputs: [array([0, 0], dtype=int32), array([0, 0], dtype=int32), array([5, 5], dtype=int32),
array([7, 7], dtype=int32), array([9, 9], dtype=int32)]
decoder_inputs: [array([1, 1], dtype=int32), array([11, 11], dtype=int32), array([13, 13], dtype=int32),
array([15, 15], dtype=int32), array([2, 2], dtype=int32)]
哥要解释一下:encoder_input:5维列表(Tensor),表示一句话是5个词,每次词是一个长度为2的array(tensor),表示batch=2,batch1的input
的这句话为[0,0,5,7,9]每个整数表示词id.decoder_inputs同理可得.
"""
# train_set = [[[5, 7, 9], [11, 13, 15, EOS_ID]], [[7, 9, 11], [13, 15, 17, EOS_ID]], [[15, 17, 19], [21, 23, 25, EOS_ID]]]
raw_encoder_input = []
raw_decoder_input = []
if batch_num >= len(train_set):
batch_train_set = train_set
else:
random_start = random.randint(0, len(train_set)-batch_num)
batch_train_set = train_set[random_start:random_start+batch_num]
for sample in batch_train_set:
raw_encoder_input.append([PAD_ID] * (input_seq_len - len(sample[0])) + sample[0])
raw_decoder_input.append([GO_ID] + sample[1] + [PAD_ID] * (output_seq_len - len(sample[1]) - 1))
encoder_inputs = []
decoder_inputs = []
target_weights = []
for length_idx in range(input_seq_len):
encoder_inputs.append(np.array([encoder_input[length_idx] for encoder_input in raw_encoder_input], dtype=np.int32))
for length_idx in range(output_seq_len):
decoder_inputs.append(np.array([decoder_input[length_idx] for decoder_input in raw_decoder_input], dtype=np.int32))
target_weights.append(np.array([
0.0 if length_idx == output_seq_len - 1 or decoder_input[length_idx] == PAD_ID else 1.0 for decoder_input in raw_decoder_input
], dtype=np.float32))
return encoder_inputs, decoder_inputs, target_weights
def seq_to_encoder(input_seq):
"""
从输入空格分隔的数字id串,转成预测用的encoder、decoder、target_weight等
"""
input_seq_array = [int(v) for v in input_seq.split()]
encoder_input = [PAD_ID] * (input_seq_len - len(input_seq_array)) + input_seq_array
decoder_input = [GO_ID] + [PAD_ID] * (output_seq_len - 1)
encoder_inputs = [np.array([v], dtype=np.int32) for v in encoder_input]
decoder_inputs = [np.array([v], dtype=np.int32) for v in decoder_input]
target_weights = [np.array([1.0], dtype=np.float32)] * output_seq_len
return encoder_inputs, decoder_inputs, target_weights
def get_model(feed_previous=False):
"""
构造模型:seq2seq
feed_previous表示decoder_inputs是我们直接提供训练数据的输入,
还是用前一个RNNCell的输出映射出来的,如果feed_previous为True,
那么就是用前一个RNNCell的输出,并经过Wx+b线性变换成
"""
learning_rate = tf.Variable(float(init_learning_rate), trainable=False, dtype=tf.float32)
learning_rate_decay_op = learning_rate.assign(learning_rate * 0.9)
encoder_inputs = []
decoder_inputs = []
target_weights = []
for i in range(input_seq_len):
encoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="encoder{0}".format(i)))
for i in range(output_seq_len + 1):
decoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="decoder{0}".format(i)))
for i in range(output_seq_len):
target_weights.append(tf.placeholder(tf.float32, shape=[None], name="weight{0}".format(i)))
# decoder_inputs左移一个时序作为targets
targets = [decoder_inputs[i + 1] for i in range(output_seq_len)]
cell = tf.contrib.rnn.BasicLSTMCell(size)
# 这里输出的状态我们不需要
outputs, _ = seq2seq.embedding_attention_seq2seq(
encoder_inputs,
decoder_inputs[:output_seq_len],
cell,
num_encoder_symbols=num_encoder_symbols,
num_decoder_symbols=num_decoder_symbols,
embedding_size=size,
output_projection=None,
feed_previous=feed_previous,
dtype=tf.float32)
# 计算加权交叉熵损失
loss = seq2seq.sequence_loss(outputs, targets, target_weights)
# 梯度下降优化器
opt = tf.train.GradientDescentOptimizer(learning_rate)
# 优化目标:让loss最小化
update = opt.apply_gradients(opt.compute_gradients(loss))
# 模型持久化
saver = tf.train.Saver(tf.global_variables())
return encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate
def train():
"""
训练过程
"""
# train_set = [[[5, 7, 9], [11, 13, 15, EOS_ID]], [[7, 9, 11], [13, 15, 17, EOS_ID]],
# [[15, 17, 19], [21, 23, 25, EOS_ID]]]
train_set = get_train_set()
with tf.Session() as sess:
encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate = get_model()
# 全部变量初始化
sess.run(tf.global_variables_initializer())
# 训练很多次迭代,每隔10次打印一次loss,可以看情况直接ctrl+c停止
previous_losses = []
for step in range(train_round):
sample_encoder_inputs, sample_decoder_inputs, sample_target_weights = get_samples(train_set, 1000)
input_feed = {}
for l in range(input_seq_len):
input_feed[encoder_inputs[l].name] = sample_encoder_inputs[l]
for l in range(output_seq_len):
input_feed[decoder_inputs[l].name] = sample_decoder_inputs[l]
input_feed[target_weights[l].name] = sample_target_weights[l]
input_feed[decoder_inputs[output_seq_len].name] = np.zeros([len(sample_decoder_inputs[0])], dtype=np.int32)
[loss_ret, _] = sess.run([loss, update], input_feed)
if step % 10 == 0:
print('[+]step='+str(step)+',loss='+str(loss_ret)+',learning_rate='+str(learning_rate.eval()))
with open('lx_bot_v3.log', 'a') as my_logger:
my_logger.write('[+]step='+str(step)+',loss='+str(loss_ret)+',learning_rate='+str(learning_rate.eval())+'\n')
if len(previous_losses) > 5 and loss_ret > max(previous_losses[-5:]):
sess.run(learning_rate_decay_op)
previous_losses.append(loss_ret)
# 模型持久化
saver.save(sess, 'model/lx_bot_v3')
def predict(input_seq):
"""
预测过程
"""
with tf.Session() as sess:
encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate = get_model(feed_previous=True)
saver.restore(sess, 'model/lx_bot_v3')
#sys.stdout.write("[in:]")
# sys.stdout.flush()
# input_seq = sys.stdin.readline()
while input_seq:
input_seq = input_seq.strip()
input_id_list = get_id_list_from(input_seq)
if (len(input_id_list)):
sample_encoder_inputs, sample_decoder_inputs, sample_target_weights = seq_to_encoder(' '.join([str(v) for v in input_id_list]))
input_feed = {}
for l in range(input_seq_len):
input_feed[encoder_inputs[l].name] = sample_encoder_inputs[l]
for l in range(output_seq_len):
input_feed[decoder_inputs[l].name] = sample_decoder_inputs[l]
input_feed[target_weights[l].name] = sample_target_weights[l]
input_feed[decoder_inputs[output_seq_len].name] = np.zeros([2], dtype=np.int32)
# 预测输出
outputs_seq = sess.run(outputs, input_feed)
# 因为输出数据每一个是num_decoder_symbols维的,因此找到数值最大的那个就是预测的id,就是这里的argmax函数的功能
outputs_seq = [int(np.argmax(logit[0], axis=0)) for logit in outputs_seq]
# 如果是结尾符,那么后面的语句就不输出了
if EOS_ID in outputs_seq:
outputs_seq = outputs_seq[:outputs_seq.index(EOS_ID)]
outputs_seq = [wordToken.id2word(v) for v in outputs_seq]
print(str(" ".join(outputs_seq)))
little_x_say = str(" ".join(outputs_seq))
else:
print("你的智商好高啊,这个问题小X回答不了,请联系我的主人小徐子!") #这个位置可以换成兜底话术
little_x_say = str("你的智商好高啊,这个问题小X回答不了,请联系我的主人小徐子!")
return little_x_say
#sys.stdout.write("[in:]")
sys.stdout.flush()
input_seq = sys.stdin.readline()
import datetime
if __name__ == "__main__":
start = datetime.datetime.now()
if sys.argv[1] == 'train':
train()
else:
predict()
end = datetime.datetime.now()
print("训练{0}轮模型,需要时间约{1}分钟".format(str(train_round),str((end-start).seconds/60.0)))
with open('lx_bot_v3.log', 'a') as my_logger:
my_logger.write("训练{0}轮模型,需要时间约{1}分钟".format(str(train_round),str((end-start).seconds/60.0)))