From 2fb895e28c1e4cdaa7dfab6bbffce7a5312860df Mon Sep 17 00:00:00 2001 From: David Lawrence Miller Date: Thu, 27 Mar 2014 11:32:40 -0400 Subject: [PATCH] monotonicity now "on" by default for adjustment models extra documentation and fixed tests for the above bug fix in check.bins -- missing $distance not caught in tests --- R/create.bins.R | 11 ++++++++++- R/ds.R | 23 +++++++++++++---------- man/ds.Rd | 22 +++++++++++++--------- tests/testthat/test_ds.R | 5 +++-- 4 files changed, 39 insertions(+), 22 deletions(-) diff --git a/R/create.bins.R b/R/create.bins.R index 244e37c..311e95f 100644 --- a/R/create.bins.R +++ b/R/create.bins.R @@ -16,7 +16,10 @@ create.bins <- function(data,cutpoints){ cp <- cutpoints # remove distances outside bins - in.cp.ind <- data>=cp[1] & data<=cp[length(cp)] + in.cp.ind <- data$distance>=cp[1] & data$distance<=cp[length(cp)] + if(!all(in.cp.ind)){ + warning("Some distances were outside bins and have been removed.") + } data <- data[in.cp.ind,] # pull out the distances (removing the NAs for now) @@ -33,6 +36,12 @@ create.bins <- function(data,cutpoints){ distbegin[ind] <- cp[i] distend[ind] <- cp[i+1] } + # last cutpoint, include those observations AT the truncation point + ind <- which(d>=cp[i] & d<=cp[i+1]) + + distbegin[ind] <- cp[i] + distend[ind] <- cp[i+1] + # handle NA distances, that we need to preserve distbegin.na <- rep(NA,length(data$distance)) diff --git a/R/ds.R b/R/ds.R index 5503e49..2283b62 100644 --- a/R/ds.R +++ b/R/ds.R @@ -35,10 +35,7 @@ #' \code{distend} then these will be used as bins if \code{cutpoints} #' is not specified. If both are specified, \code{cutpoints} has #' precedence. -#' @param monotonicity should the detection function be constrained for -#' monotonicity weakly ("weak"), strictly ("strict") or not at all -#' ("none" or \code{FALSE}). See Montonicity, below. (Default -#' \code{FALSE}). +#' @param monotonicity should the detection function be constrained for monotonicity weakly (\code{"weak"}), strictly (\code{"strict"}) or not at all (\code{"none"} or \code{FALSE}). See Montonicity, below. (Default \code{"strict"}). #' @param dht.group should density abundance estimates consider all groups to be #' size 1 (abundance of groups) \code{dht.group=TRUE} or should the #' abundance of individuals (group size is taken into account), @@ -147,7 +144,7 @@ #' library(Distance) #' data(book.tee.data) #' tee.data<-book.tee.data$book.tee.dataframe[book.tee.data$book.tee.dataframe$observer==1,] -#' ds.model<-ds(tee.data,4,monotonicity="strict") +#' ds.model<-ds(tee.data,4) #' summary(ds.model) #' plot(ds.model) #' @@ -158,7 +155,7 @@ #' samples<-book.tee.data$book.tee.samples #' obs<-book.tee.data$book.tee.obs #' -#' ds.dht.model<-ds(tee.data,4,region.table=region,monotonicity="strict", +#' ds.dht.model<-ds(tee.data,4,region.table=region, #' sample.table=samples,obs.table=obs) #' summary(ds.dht.model) #' @@ -166,9 +163,12 @@ #' ds.model.cos2<-ds(tee.data,4,adjustment="cos",order=2) #' summary(ds.model.cos2) #' -#' # specify order 2 and 3 cosine adjustments - LOTS of non-monotonicity! -#' ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3)) -#' summary(ds.model.cos24) +#' # specify order 2 and 3 cosine adjustments, turning monotonicity +#' # constraints off +#' ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3), +#' monotonicity=FALSE) +#' # check for non-monotonicity -- actually no problems +#' check.mono(ds.model.cos24$ddf,plot=TRUE,n.pts=100) #' #' # truncate the largest 10% of the data and fit only a hazard-rate #' # detection function @@ -185,7 +185,7 @@ ds<-function(data, truncation=ifelse(is.null(cutpoints), formula=~1, key=c("hn","hr","unif"), adjustment=c("cos","herm","poly"), order=NULL, scale=c("width","scale"), - cutpoints=NULL, monotonicity=FALSE, dht.group=FALSE, + cutpoints=NULL, monotonicity="strict", dht.group=FALSE, region.table=NULL, sample.table=NULL, obs.table=NULL, convert.units=1, method="nlminb", quiet=FALSE, debug.level=0, initial.values=NULL){ @@ -488,6 +488,9 @@ ds<-function(data, truncation=ifelse(is.null(cutpoints), " with ", adj.name,"(", paste(order[1:i],collapse=","), ") adjustments", sep="") + }else{ + # if we have only the key function, turn off monotonicity + meta.data$mono <- meta.data$mono.strict <- FALSE } model.formula<-paste(model.formula,")",sep="") diff --git a/man/ds.Rd b/man/ds.Rd index dc8982d..643b146 100644 --- a/man/ds.Rd +++ b/man/ds.Rd @@ -6,7 +6,7 @@ ds(data, truncation = ifelse(is.null(cutpoints), ifelse(is.null(data$distend), max(data$distance), max(data$distend)), max(cutpoints)), transect = c("line", "point"), formula = ~1, key = c("hn", "hr", "unif"), adjustment = c("cos", "herm", "poly"), order = NULL, - scale = c("width", "scale"), cutpoints = NULL, monotonicity = FALSE, + scale = c("width", "scale"), cutpoints = NULL, monotonicity = "strict", dht.group = FALSE, region.table = NULL, sample.table = NULL, obs.table = NULL, convert.units = 1, method = "nlminb", quiet = FALSE, debug.level = 0, initial.values = NULL) @@ -75,9 +75,10 @@ ds(data, truncation = ifelse(is.null(cutpoints), ifelse(is.null(data$distend), \code{cutpoints} has precedence.} \item{monotonicity}{should the detection function be - constrained for monotonicity weakly ("weak"), strictly - ("strict") or not at all ("none" or \code{FALSE}). See - Montonicity, below. (Default \code{FALSE}).} + constrained for monotonicity weakly (\code{"weak"}), + strictly (\code{"strict"}) or not at all (\code{"none"} + or \code{FALSE}). See Montonicity, below. (Default + \code{"strict"}).} \item{dht.group}{should density abundance estimates consider all groups to be size 1 (abundance of groups) @@ -261,7 +262,7 @@ using \code{ds()}. library(Distance) data(book.tee.data) tee.data<-book.tee.data$book.tee.dataframe[book.tee.data$book.tee.dataframe$observer==1,] -ds.model<-ds(tee.data,4,monotonicity="strict") +ds.model<-ds(tee.data,4) summary(ds.model) plot(ds.model) @@ -272,7 +273,7 @@ region<-book.tee.data$book.tee.region samples<-book.tee.data$book.tee.samples obs<-book.tee.data$book.tee.obs -ds.dht.model<-ds(tee.data,4,region.table=region,monotonicity="strict", +ds.dht.model<-ds(tee.data,4,region.table=region, sample.table=samples,obs.table=obs) summary(ds.dht.model) @@ -280,9 +281,12 @@ summary(ds.dht.model) ds.model.cos2<-ds(tee.data,4,adjustment="cos",order=2) summary(ds.model.cos2) -# specify order 2 and 3 cosine adjustments - LOTS of non-monotonicity! -ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3)) -summary(ds.model.cos24) +# specify order 2 and 3 cosine adjustments, turning monotonicity +# constraints off +ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3), + monotonicity=FALSE) +# check for non-monotonicity -- actually no problems +check.mono(ds.model.cos24$ddf,plot=TRUE,n.pts=100) # truncate the largest 10\% of the data and fit only a hazard-rate # detection function diff --git a/tests/testthat/test_ds.R b/tests/testthat/test_ds.R index a2a4517..1e81208 100644 --- a/tests/testthat/test_ds.R +++ b/tests/testthat/test_ds.R @@ -45,7 +45,7 @@ test_that("Simple models work",{ # specify order 2 cosine adjustments ds.model.cos2<-ds(egdata,4,adjustment="cos",order=2, region.table=region, - sample.table=samples,obs.table=obs) + sample.table=samples,obs.table=obs,monotonicity=FALSE) # pars and lnl #result <- ddf(dsmodel=~mcds(key="hn", formula=~1, adj.series="cos", # adj.order=2), data=egdata, method="ds", @@ -58,7 +58,8 @@ test_that("Simple models work",{ # specify order 2 and 4 cosine adjustments ds.model.cos24<-ds(egdata,4,adjustment="cos",order=c(2,4), - region.table=region, sample.table=samples, obs.table=obs) + region.table=region, sample.table=samples, obs.table=obs, + monotonicity=FALSE) tp <- c(0.92121582, -0.03712634, -0.03495348) names(tp) <- c("X.Intercept.","V2","V3") expect_equal(ds.model.cos24$ddf$par, tp)