-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem_MACs_computation.py
40 lines (37 loc) · 1.42 KB
/
mem_MACs_computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# network_generate.py
# Alessio Burrello <[email protected]>
#
# Copyright (C) 2019-2020 University of Bologna
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import importlib
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import sys
from copy import deepcopy
from mako.template import Template
from collections import OrderedDict
def create_layer( channels, spatial_dim):
MACs = spatial_dim*spatial_dim*channels*channels
mem = spatial_dim*spatial_dim*channels*2+channels*channels
print("Mem: {} MACs: {}".format(mem, MACs))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('channels', type=int, help='Number of input and output channels')
parser.add_argument('spatial_dimensions', type=int, help='Spatial dimension')
args = parser.parse_args()
create_layer(channels = args.channels, spatial_dim = args.spatial_dimensions)