forked from faiface/pixel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrectangle.go
284 lines (248 loc) · 7.76 KB
/
rectangle.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package pixel
import (
"fmt"
"math"
)
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
// points, Min and Max.
//
// The invariant should hold, that Max's components are greater or equal than Min's components
// respectively.
type Rect struct {
Min, Max Vec
}
// ZR is a zero rectangle.
var ZR = Rect{Min: ZV, Max: ZV}
// R returns a new Rect with given the Min and Max coordinates.
//
// Note that the returned rectangle is not automatically normalized.
func R(minX, minY, maxX, maxY float64) Rect {
return Rect{
Min: Vec{minX, minY},
Max: Vec{maxX, maxY},
}
}
// String returns the string representation of the Rect.
//
// r := pixel.R(100, 50, 200, 300)
// r.String() // returns "Rect(100, 50, 200, 300)"
// fmt.Println(r) // Rect(100, 50, 200, 300)
func (r Rect) String() string {
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y)
}
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
func (r Rect) Norm() Rect {
return Rect{
Min: Vec{
math.Min(r.Min.X, r.Max.X),
math.Min(r.Min.Y, r.Max.Y),
},
Max: Vec{
math.Max(r.Min.X, r.Max.X),
math.Max(r.Min.Y, r.Max.Y),
},
}
}
// W returns the width of the Rect.
func (r Rect) W() float64 {
return r.Max.X - r.Min.X
}
// H returns the height of the Rect.
func (r Rect) H() float64 {
return r.Max.Y - r.Min.Y
}
// Size returns the vector of width and height of the Rect.
func (r Rect) Size() Vec {
return V(r.W(), r.H())
}
// Area returns the area of r. If r is not normalized, area may be negative.
func (r Rect) Area() float64 {
return r.W() * r.H()
}
// Edges will return the four lines which make up the edges of the rectangle.
func (r Rect) Edges() [4]Line {
corners := r.Vertices()
return [4]Line{
{A: corners[0], B: corners[1]},
{A: corners[1], B: corners[2]},
{A: corners[2], B: corners[3]},
{A: corners[3], B: corners[0]},
}
}
// Anchor is a vector used to define anchors, such as `Center`, `Top`, `TopRight`, etc.
type Anchor Vec
var (
Center = Anchor{0.5, 0.5}
Top = Anchor{0.5, 0}
TopRight = Anchor{0, 0}
Right = Anchor{0, 0.5}
BottomRight = Anchor{0, 1}
Bottom = Anchor{0.5, 1}
BottomLeft = Anchor{1, 1}
Left = Anchor{1, 0.5}
TopLeft = Anchor{1, 0}
)
var anchorStrings map[Anchor]string = map[Anchor]string{
Center: "center",
Top: "top",
TopRight: "top-right",
Right: "right",
BottomRight: "bottom-right",
Bottom: "bottom",
BottomLeft: "bottom-left",
Left: "left",
TopLeft: "top-left",
}
// String returns the string representation of an anchor.
func (anchor Anchor) String() string {
return anchorStrings[anchor]
}
var oppositeAnchors map[Anchor]Anchor = map[Anchor]Anchor{
Center: Center,
Top: Bottom,
Bottom: Top,
Right: Left,
Left: Right,
TopRight: BottomLeft,
BottomLeft: TopRight,
BottomRight: TopLeft,
TopLeft: BottomRight,
}
// Opposite returns the opposite position of the anchor (ie. Top -> Bottom; BottomLeft -> TopRight, etc.).
func (anchor Anchor) Opposite() Anchor {
return oppositeAnchors[anchor]
}
// AnchorPos returns the relative position of the given anchor.
func (r Rect) AnchorPos(anchor Anchor) Vec {
return r.Size().ScaledXY(V(0, 0).Sub(Vec(anchor)))
}
// AlignedTo returns the rect moved by the given anchor.
func (rect Rect) AlignedTo(anchor Anchor) Rect {
return rect.Moved(rect.AnchorPos(anchor))
}
// Center returns the position of the center of the Rect.
// `rect.Center()` is equivalent to `rect.Anchor(pixel.Anchor.Center)`
func (r Rect) Center() Vec {
return Lerp(r.Min, r.Max, 0.5)
}
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
func (r Rect) Moved(delta Vec) Rect {
return Rect{
Min: r.Min.Add(delta),
Max: r.Max.Add(delta),
}
}
// Resized returns the Rect resized to the given size while keeping the position of the given
// anchor.
//
// r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner
// r.Resized(r.Max, size) // same with the top-right corner
// r.Resized(r.Center(), size) // resizes around the center
//
// This function does not make sense for resizing a rectangle of zero area and will panic. Use
// ResizedMin in the case of zero area.
func (r Rect) Resized(anchor, size Vec) Rect {
if r.W()*r.H() == 0 {
panic(fmt.Errorf("(%T).Resize: zero area", r))
}
fraction := Vec{size.X / r.W(), size.Y / r.H()}
return Rect{
Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)),
Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)),
}
}
// ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's
// Min.
//
// Sizes of zero area are safe here.
func (r Rect) ResizedMin(size Vec) Rect {
return Rect{
Min: r.Min,
Max: r.Min.Add(size),
}
}
// Contains checks whether a vector u is contained within this Rect (including it's borders).
func (r Rect) Contains(u Vec) bool {
return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y
}
// Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized.
func (r Rect) Union(s Rect) Rect {
return R(
math.Min(r.Min.X, s.Min.X),
math.Min(r.Min.Y, s.Min.Y),
math.Max(r.Max.X, s.Max.X),
math.Max(r.Max.Y, s.Max.Y),
)
}
// Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized.
//
// If r and s don't overlap, this function returns a zero-rectangle.
func (r Rect) Intersect(s Rect) Rect {
t := R(
math.Max(r.Min.X, s.Min.X),
math.Max(r.Min.Y, s.Min.Y),
math.Min(r.Max.X, s.Max.X),
math.Min(r.Max.Y, s.Max.Y),
)
if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y {
return ZR
}
return t
}
// Intersects returns whether or not the given Rect intersects at any point with this Rect.
//
// This function is overall about 5x faster than Intersect, so it is better
// to use if you have no need for the returned Rect from Intersect.
func (r Rect) Intersects(s Rect) bool {
return !(s.Max.X <= r.Min.X ||
s.Min.X >= r.Max.X ||
s.Max.Y <= r.Min.Y ||
s.Min.Y >= r.Max.Y)
}
// IntersectCircle returns a minimal required Vector, such that moving the rect by that vector would stop the Circle
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
// the perimeters touch.
//
// This function will return a non-zero vector if:
// - The Rect contains the Circle, partially or fully
// - The Circle contains the Rect, partially of fully
func (r Rect) IntersectCircle(c Circle) Vec {
return c.IntersectRect(r).Scaled(-1)
}
// IntersectLine will return the shortest Vec such that if the Rect is moved by the Vec returned, the Line and Rect no
// longer intersect.
func (r Rect) IntersectLine(l Line) Vec {
return l.IntersectRect(r).Scaled(-1)
}
// IntersectionPoints returns all the points where the Rect intersects with the line provided. This can be zero, one or
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
// closest-to-l.A to closest-to-l.B.
func (r Rect) IntersectionPoints(l Line) []Vec {
// Use map keys to ensure unique points
pointMap := make(map[Vec]struct{})
for _, edge := range r.Edges() {
if intersect, ok := l.Intersect(edge); ok {
pointMap[intersect] = struct{}{}
}
}
points := make([]Vec, 0, len(pointMap))
for point := range pointMap {
points = append(points, point)
}
// Order the points
if len(points) == 2 {
if points[1].To(l.A).Len() < points[0].To(l.A).Len() {
return []Vec{points[1], points[0]}
}
}
return points
}
// Vertices returns a slice of the four corners which make up the rectangle.
func (r Rect) Vertices() [4]Vec {
return [4]Vec{
r.Min,
V(r.Min.X, r.Max.Y),
r.Max,
V(r.Max.X, r.Min.Y),
}
}