-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure.lean
99 lines (80 loc) · 4.75 KB
/
measure.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import .set .galois .lattice
universes u
variables {E : Type u}
def seq : Type u → Type u := λ α, ℕ → α
class σ_algebra {E : Type u} (ℰ : set (set E)) : Prop :=
(empty : ∅ ∈ ℰ)
(compl : ∀ A ∈ ℰ, -A ∈ ℰ)
(union : ∀ (As : ℕ → set E) (p : ∀ n, As n ∈ ℰ), (⋃ n, As n) ∈ ℰ)
namespace σ_algebra
variables {ℰ : set (set E)} [σ_algebra ℰ]
lemma inter : ∀ (As : ℕ → set E) (p : ∀ n, As n ∈ ℰ), (⋂ n, As n) ∈ ℰ :=
begin
intros As p,simp [set.Inter_compl], apply σ_algebra.compl, apply σ_algebra.union,
intro n, apply σ_algebra.compl, apply p,
end
def algebra_on (E : Type u) : Type* := {ℰ:set(set E) // σ_algebra ℰ}
instance : has_mem (set E) (algebra_on E) := ⟨λ a b, a ∈ b.val⟩
lemma ext : Π {ℰ₁ ℰ₂ : algebra_on E}, ℰ₁.val = ℰ₂.val → ℰ₁ = ℰ₂
|⟨_,_⟩ ⟨_,_⟩ rfl := rfl
instance : partial_order (algebra_on E) :=
{ le := λ ℰ₁ ℰ₂, ℰ₁.1 ⊆ ℰ₂.1
, le_refl := λ ℰ A, id
, le_trans := λ A B C, set.subset.trans
, le_antisymm := λ A B l r, ext $ set.subset.antisymm l r
}
def forget : (algebra_on E) → set (set E) := λ x, x.val
inductive gen_free (𝒜 : set (set E)) : set E → Prop
|basic : ∀ A ∈ 𝒜, gen_free A
|empty : gen_free ∅
|compl : ∀ A, gen_free A → gen_free (-A)
|union : ∀ (As : seq (set E)), (∀ n, gen_free (As n)) → gen_free (⋃ n, As n)
def free (𝒜 : set (set E)) : algebra_on E := ⟨set_of $ gen_free 𝒜, {empty := gen_free.empty _,compl := gen_free.compl,union := gen_free.union}⟩
def gc : @galois_connection (set (set E)) (algebra_on E) _ _ free forget :=
λ 𝒜 ℰ,
⟨λ (h₁ : (free 𝒜).val ⊆ ℰ.val) A AA, h₁ (gen_free.basic A AA)
,λ (h₁ : 𝒜 ⊆ ℰ.val) A h₂,
have ecu : σ_algebra ℰ.val, from ℰ.2,
gen_free.rec_on h₂ (λ B BE, h₁ BE) (ecu.empty) (λ B _ BE, @σ_algebra.compl _ _ ecu B BE) (λ As _ q, @σ_algebra.union _ _ ecu As q)
⟩
def gi : @galois_insertion (set (set E)) (algebra_on E) _ _ free forget :=
{ gc := gc
, le_l_u := λ ℰ A mA, gen_free.basic A mA
}
instance : complete_lattice (algebra_on E) := complete_lattice_of_gi gi
structure π_system (𝒜 : set (set E)) :=
(empty : ∅ ∈ 𝒜)
(inter : ∀ (A B ∈ 𝒜), A ∩ B ∈ 𝒜)
structure d_system (𝒜 : set (set E)) :=
(univ : set.univ ∈ 𝒜)
(subs : ∀ (A B ∈ 𝒜), A ⊆ B → (B ∩ -A) ∈ 𝒜)
(union : ∀ (f : seq (set E)), (∀ n, f n ∈ 𝒜) → (monotone f) → (⋃ n, f n) ∈ 𝒜)
lemma dynkin {𝒜 𝒟 : set (set E)} (p: π_system 𝒜) (d : d_system 𝒟) (ss : 𝒜 ⊆ 𝒟) : (forget (free 𝒜) ⊆ 𝒟) :=
let 𝒟' := { B ∈ 𝒟 |∀ A ∈ 𝒜, B ∩ A ∈ 𝒟} in
have h₁ : 𝒜 ⊆ 𝒟', from λ A mA, ⟨ss mA,λ X mX, ss (p.inter _ _ mA mX)⟩,
have h₂ : set.univ ∈ 𝒟', from ⟨d.univ, λ A mA, begin apply ss, rw set.inter.univ, apply mA end⟩,
have h₃ : ∀ (B₁ B₂ ∈ 𝒟'), B₁ ⊆ B₂ → B₂ ∩ -B₁ ∈ 𝒟', from λ B₁ B₂ ⟨m1,h1⟩ ⟨m2,h2⟩ sb,
⟨d.subs _ _ m1 m2 sb
, λ A mA,
have h₄ : (B₂ ∩ -B₁) ∩ A = (B₂ ∩ A) ∩ -(B₁ ∩ A), from set.ext $ λ x, ⟨λ ⟨⟨i,j⟩,k⟩, ⟨⟨i,k⟩,λ ⟨l,m⟩, j l⟩,λ ⟨⟨i,j⟩,f⟩, ⟨⟨i,λ k, f⟨k,j⟩⟩,j⟩⟩ ,
have h₅ : (B₂ ∩ A) ∈ 𝒟, from h2 A mA,
have h₆ : (B₁ ∩ A) ∈ 𝒟, from h1 A mA,
suffices (B₂ ∩ A) ∩ -(B₁ ∩ A) ∈ 𝒟, by simp [h₄, this],
d.subs _ _ h₆ h₅ (λ x ⟨m2,ma⟩, ⟨sb m2, ma⟩)
⟩,
have h₄: ∀ (f : seq (set E)), (∀ n, f n ∈ 𝒟') →(monotone f) → (⋃ n, f n) ∈ 𝒟', from
λ f p m, ⟨d.union (f) (λ n, (p n).1) m, λ A mA,
have h₅ : (⋃ n, f n) ∩ A = (⋃ n, (f n) ∩ A), from set.ext $ λ x, ⟨λ ⟨⟨i,j⟩,k⟩, ⟨i,⟨j,k⟩⟩,λ ⟨i,⟨j,k⟩⟩, ⟨⟨i,j⟩,k⟩⟩,
suffices (⋃ n, (f n) ∩ A) ∈ 𝒟, by simp [h₅, this],
d.union _ (λ n, (p n).2 A mA) (λ i j ij x ⟨p,q⟩, ⟨m ij p,q⟩)
⟩,
λ A mA, gen_free.rec_on mA
(λ A mA, ss mA)
(ss p.empty)
(λ B _ mB,
suffices set.univ ∩ -B ∈ 𝒟, by simp [set.inter.univ] at this; assumption,
d.subs B set.univ mB (d.univ) (λ _ _, ⟨⟩)
)
(λ f _ q, _)
end σ_algebra
--def disjoint_sequence (ℰ : set (set E)) := {As:ℕ→set E//(∀ n, As n ∈ ℰ) ∧ (∀ n m, As n ∩ As m = ∅)}