-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscratch.lean
149 lines (116 loc) · 4.2 KB
/
scratch.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
meta def hello := con
namespace floaties
/- I added a `float` VM component. -/
open native
meta def x : float := 199
#eval -x ^ (3 : float)
#eval (199 / 400 : float) -- outputs 0.4975
#eval ((23.45 : float) = (23.45 : float) : bool)
end floaties
∀ ∀l αll
variables {α β : Type}
meta def Y {α : Type} : (α → α) → α | f := f (Y f)
universes u v
#eval to_string $ expr.subst ( (expr.var 1)) ```(nat.succ 0)
#eval to_string $ expr.is_internal_cnstr $ (expr.lam `hello binder_info.default (expr.var 1) $ expr.app (expr.app (expr.var 5) (expr.var 3)) `(4))
#eval to_string $ (expr.instantiate_var (expr.app (expr.var 5) (expr.var 2435)) `(1))
def e := Π a : Type u, Π b : Type v, a × b
#check e
#eval to_string $ expr.collect_univ_params $ expr.reflect e
#eval @undefined_core nat "wtf"
namespace hidden
definition cong (a b m : ℤ) : Prop := ∃ n : ℤ, b - a = m * n
notation a ` ≡ ` b ` mod ` m := cong a b m
set_option trace.simplify true
theorem cong_refl (m : ℤ) : ∀ a : ℤ, a ≡ a mod m :=
begin
intro a,
unfold cong,
existsi (0:ℤ),
simp
end
meta def trace_simp_lemmas : tactic unit :=
do
l ← tactic.get_simp_lemmas_or_default none,
str ← simp_lemmas.pp l,
tactic.trace str
example : true := begin trace_simp_lemmas, trivial end
namespace my_namespace
constant X : Type u
constants x y : X
constant f : X → X
constants (P : X → Prop) (Q : Prop)
/--Hello world-/
axiom my_axiom : ∀ (a:X) (p : P(a)) (q:Q), Q
#check my_axiom
#check expr.mvar
meta def scratch_tac : tactic unit := do
-- a ← tactic.resolve_name `my_axiom >>= tactic.to_expr,
-- l ← tactic.apply_core a {},
-- g ← tactic.target,
-- tactic.set_tag g [`hello.world],
-- e ← tactic.head_eta_expand a,
-- tactic.trace e,
tactic.mk_fresh_name >>= tactic.trace,
pure()
example : Q :=
begin
scratch_tac,
scratch_tac,
scratch_tac,
scratch_tac,
tactic.rotate_left 1,
sorry
end
example : true := begin
tactic.add_doc_string `nat "my dumb axiom is great at breaking maths yay.",
tactic.doc_string `nat >>= tactic.trace,
trivial
end
#check nat
section scratch
end scratch
end my_namespace
end hidden
example (P : α → Prop) (Q : Prop) (h₁ : ∃ x, P(x)) (h₂ : ∀ x, P(x) → Q) : Q :=
begin
cases h₁,
apply h₂ _, assumption
end
example : ∀ (n : nat), n = n :=
begin
intro,
induction n,
end
namespace field_idea_auto_param
-- eventually a sophisticated tactic that figures out if an elt is ≠ 0
meta def nz_tactic := tactic.assumption
class dvr (R : Type u) extends (ring R) :=
(inv(x:R) (p:x ≠ 0): R)
(inv_l : Π (x y : R) (p:y≠0), x * (inv y p) = 1 )
variables {R : Type u} [dvr R]
def inv (y : R) (nz : y ≠ 0 . nz_tactic) : R := dvr.inv y nz
def div (x y : R) (nz : y ≠ 0 . nz_tactic) : R := x * (inv y)
infix ` /. `:50 := div
variables {x y : R}
variable (xz : x ≠ 0 . nz_tactic) -- I was really hoping that this would be allowed
example (x y : R) (xz : x ≠ 0) (yz : y ≠ 0) : (1 /. (x * y)) = (1 /. x) * (1 /. y) := sorry
end field_idea_auto_param
namespace field_idea_class
class my_division_ring (R : Type u) extends (integral_domain R) :=
(inv : Π(x:R) [x ≠ 0], R)
(inv_l (x : R) [nz:x ≠ 0] : x * (@inv x nz) = 1 )
(inv_r (x : R) [nz:x ≠ 0] : (@inv x nz) * x = 1 )
variables {R : Type u} [my_division_ring R]
def inv (y : R) [nz:y ≠ 0] : R := @my_division_ring.inv _ _ y nz
def div (x y : R) [y ≠ 0] : R := x * (inv y)
infix ` ÷ `:50 := div
variables {x y : R} [x ≠ 0] [y ≠ 0]
def asdf : ((x * y) ≠ 0) := mul_ne_zero ‹x ≠ 0› ‹y ≠ 0›
example : (1 ÷ (x * y)) = (1 ÷ x) * (1 ÷ y) := sorry
-- calc (1 ÷ (x * y)) = inv(x * y) * 1 : by sorry
-- ... = inv(x * y) * (x * inv(x)) * (y * inv(y)) : by sorry
-- ... = (inv(x * y) * (x * y)) * (inv(x) * inv(y)) : by ac_refl
-- ... = 1 * (1 * inv(x)) * (1 * inv(y)) : by sorry
-- ... = (1 ÷ x) * (1 ÷ y) : by sorry
end field_idea_class