forked from csjunxu/WNNM_CVPR2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemo_MoG.m
59 lines (58 loc) · 2.71 KB
/
Demo_MoG.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
clear;
Original_image_dir = 'C:\Users\csjunxu\Desktop\ECCV2016\grayimages\';
fpath = fullfile(Original_image_dir, '*.png');
im_dir = dir(fpath);
im_num = length(im_dir);
nSig = [10 30 50];
nWeight = [0.25 0.5 0.25];
for Sample = 1:1
matname = sprintf('WNNM_MoG_%d_%2.2f_%d_%2.2f_%d_%2.2f.mat',nSig(1),nWeight(1),nSig(2),nWeight(2),nSig(3),nWeight(3));
if exist(matname,'file')
eval(['load ' matname]);
if Sample <=length(mPSNR)
continue
end
end
imPSNR{Sample} = [];
imSSIM{Sample} = [];
for i = 1:im_num
%% read clean image
S = regexp(im_dir(i).name, '\.', 'split');
O_Img = double(imread(fullfile(Original_image_dir, im_dir(i).name)));
%% generate MoG noise
stream = RandStream('mt19937ar','Seed',Sample-1);
SampleIndex = randperm(stream,numel(O_Img));
NoiseMatrix = zeros(size(O_Img));
randn('seed',Sample-1)
Pixels1 = fix(nWeight(1)*numel(NoiseMatrix));
NoiseMatrix(SampleIndex(1 : Pixels1)) = nSig(1)*randn(1,Pixels1);
randn('seed',Sample-1)
Pixels2 = fix(nWeight(2)*numel(NoiseMatrix));
NoiseMatrix(SampleIndex(Pixels1+1 : Pixels1+Pixels2)) = nSig(2)*randn(1,Pixels2);
randn('seed',Sample-1)
Pixels3 = numel(NoiseMatrix) - (Pixels1+Pixels2);
NoiseMatrix(SampleIndex(Pixels1+Pixels2+1 : end)) = nSig(3)*randn(1,Pixels3);
%% generate noisy image with MoG noise
N_Img = O_Img + NoiseMatrix;
%% noise level estimation
nLevel = NoiseLevel(N_Img);
fprintf( 'Noisy Image: Noise Level is %2.2f, PSNR = %2.2f \n\n\n',nLevel, csnr( N_Img, O_Img, 0, 0 ) );
%% denoising
Par = ParSet(nLevel);
E_Img = WNNM_DeNoising( N_Img, O_Img, Par );
%% output
imname = sprintf('./MoGresults/WNNM_MoG_Sample%d_%d_%2.2f_%d_%2.2f_%d_%2.2f_%s',Sample,nSig(1),nWeight(1),nSig(2),nWeight(2),nSig(3),nWeight(3),im_dir(i).name);
imwrite(E_Img/255,imname);
imPSNR{Sample} = [imPSNR{Sample} csnr( O_Img, E_Img, 0, 0 )];
imSSIM{Sample} = [imSSIM{Sample} cal_ssim( E_Img, O_Img, 0, 0 )];
fprintf( 'Estimated Image: PSNR = %2.2f, SSIM = %2.4f \n\n\n', csnr( O_Img, E_Img, 0, 0 ),cal_ssim( E_Img, O_Img, 0, 0 ) );
end
mPSNR(Sample)=mean(imPSNR{Sample},2);
mSSIM(Sample)=mean(imSSIM{Sample},2);
fprintf('The average PSNR = %2.4f, SSIM = %2.4f. \n', mPSNR(Sample),mSSIM(Sample));
save(matname,'mPSNR','mSSIM','imPSNR','imSSIM');
end
PSNR = mean(mPSNR);
SSIM = mean(mSSIM);
result = sprintf('Sample%d_WNNM_MoG_%d_%2.2f_%d_%2.2f_%d_%2.2f.mat',Sample,nSig(1),nWeight(1),nSig(2),nWeight(2),nSig(3),nWeight(3));
save(result,'PSNR','SSIM','mPSNR','mSSIM','imPSNR','imSSIM');