forked from csjunxu/WNNM_CVPR2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemo_RealwithGT.m
62 lines (61 loc) · 2.74 KB
/
Demo_RealwithGT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
clear;
% GT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2017\our_Results\Real_MeanImage\';
% GT_fpath = fullfile(GT_Original_image_dir, '*.JPG');
% TT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2017\our_Results\Real_NoisyImage\';
% TT_fpath = fullfile(TT_Original_image_dir, '*.JPG');
% GT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2017\cc_Results\Real_ccnoise_denoised_part\';
% GT_fpath = fullfile(GT_Original_image_dir, '*mean.png');
% TT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2017\cc_Results\Real_ccnoise_denoised_part\';
% TT_fpath = fullfile(TT_Original_image_dir, '*real.png');
GT_Original_image_dir = 'C:/Users/csjunxu/Desktop/RID_Dataset/RealisticImage/';
GT_fpath = fullfile(GT_Original_image_dir, '*mean.JPG');
TT_Original_image_dir = 'C:/Users/csjunxu/Desktop/RID_Dataset/RealisticImage/';
TT_fpath = fullfile(TT_Original_image_dir, '*real.JPG');
GT_im_dir = dir(GT_fpath);
TT_im_dir = dir(TT_fpath);
im_num = length(TT_im_dir);
addpath('NoiseEstimation');
PSNR = [];
SSIM = [];
nPSNR = [];
nSSIM = [];
method = 'WNNM';
write_MAT_dir = ['C:/Users/csjunxu/Desktop/CVPR2018 Denoising/PolyU_Results/'];
write_sRGB_dir = ['C:/Users/csjunxu/Desktop/CVPR2018 Denoising/PolyU_Results/' method];
if ~isdir(write_sRGB_dir)
mkdir(write_sRGB_dir)
end
% out_fpath = fullfile(write_sRGB_dir, '*.png');
% out_im_dir = dir(out_fpath);
RunTime = [];
for i = 1:im_num
fprintf('%s: \n',TT_im_dir(i).name);
% fprintf('%s: \n',out_im_dir(i).name);
IM = double(imread(fullfile(TT_Original_image_dir,TT_im_dir(i).name) ));
IM_GT = double(imread(fullfile(GT_Original_image_dir, GT_im_dir(i).name)));
fprintf('The initial PSNR = %2.4f, SSIM = %2.4f. \n', csnr(uint8(IM), uint8(IM_GT), 0, 0 ), cal_ssim(uint8(IM), uint8(IM_GT), 0, 0 ));
IMname = TT_im_dir(i).name(1:end-9);
[h,w,ch] = size(IM);
% IMout = double(imread(fullfile(write_sRGB_dir,out_im_dir(i).name) ));
IMout = zeros(size(IM));
for cc = 1:ch
%% denoising
nSig = NoiseEstimation(IM(:, :, cc), 8);
Par = ParSet(nSig);
IMoutcc = WNNM_DeNoising( IM(:,:,cc), IM_GT(:,:,cc), Par );
IMout(:,:,cc) = IMoutcc;
end
PSNR = [PSNR csnr( IMout, IM_GT, 0, 0 )];
SSIM = [SSIM cal_ssim( IMout, IM_GT, 0, 0 )];
nPSNR = [nPSNR csnr( IM, IM_GT, 0, 0 )];
nSSIM = [nSSIM cal_ssim( IM, IM_GT, 0, 0 )];
fprintf('The final PSNR = %2.4f, SSIM = %2.4f. \n', PSNR(end), SSIM(end));
imwrite(IMout/255, [write_sRGB_dir '/' method '_our_' IMname '.png']);
end
mPSNR = mean(PSNR);
mSSIM = mean(SSIM);
mnPSNR = mean(nPSNR);
mnSSIM = mean(nSSIM);
mRunTime = mean(RunTime);
matname = sprintf([write_MAT_dir method '_our.mat']);
save(matname,'PSNR','mPSNR','SSIM','mSSIM','nPSNR','nSSIM','mnPSNR','mnSSIM','RunTime','mRunTime');