diff --git a/tests/error-messages/Monoid.fst.json_output.expected b/tests/error-messages/Monoid.fst.json_output.expected index 1997ea79d94..e276faba323 100644 --- a/tests/error-messages/Monoid.fst.json_output.expected +++ b/tests/error-messages/Monoid.fst.json_output.expected @@ -345,8 +345,8 @@ let left_action_morphism f mf la lb = forall (g: ma) (x: a). lb.act (mf g) (f x) Module after type checking: module Monoid Declarations: [ -let right_unitality_lemma m u476 mult = forall (x: m). mult x u476 == x -let left_unitality_lemma m u476 mult = forall (x: m). mult u476 x == x +let right_unitality_lemma m u466 mult = forall (x: m). mult x u466 == x +let left_unitality_lemma m u466 mult = forall (x: m). mult u466 x == x let associativity_lemma m mult = forall (x: m) (y: m) (z: m). mult (mult x y) z == mult x (mult y z) unopteq type monoid (m: Type) = @@ -382,25 +382,25 @@ val monoid__uu___haseq: Prims.l_True /\ -let intro_monoid m u476 mult = Monoid.Monoid u476 mult () () () <: Prims.Pure (Monoid.monoid m) +let intro_monoid m u466 mult = Monoid.Monoid u466 mult () () () <: Prims.Pure (Monoid.monoid m) let nat_plus_monoid = let add x y = x + y <: Prims.nat in Monoid.intro_monoid Prims.nat 0 add let int_plus_monoid = Monoid.intro_monoid Prims.int 0 Prims.op_Addition let conjunction_monoid = - let u474 = FStar.Pervasives.singleton Prims.l_True in + let u464 = FStar.Pervasives.singleton Prims.l_True in let mult p q = p /\ q <: Prims.prop in let left_unitality_helper p = - (assert (mult u474 p <==> p); - FStar.PropositionalExtensionality.apply (mult u474 p) p) + (assert (mult u464 p <==> p); + FStar.PropositionalExtensionality.apply (mult u464 p) p) <: - FStar.Pervasives.Lemma (ensures mult u474 p == p) + FStar.Pervasives.Lemma (ensures mult u464 p == p) in let right_unitality_helper p = - (assert (mult p u474 <==> p); - FStar.PropositionalExtensionality.apply (mult p u474) p) + (assert (mult p u464 <==> p); + FStar.PropositionalExtensionality.apply (mult p u464) p) <: - FStar.Pervasives.Lemma (ensures mult p u474 == p) + FStar.Pervasives.Lemma (ensures mult p u464 == p) in let associativity_helper p1 p2 p3 = (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3)); @@ -409,26 +409,26 @@ let conjunction_monoid = FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3)) in FStar.Classical.forall_intro right_unitality_helper; - assert (Monoid.right_unitality_lemma Prims.prop u474 mult); + assert (Monoid.right_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro left_unitality_helper; - assert (Monoid.left_unitality_lemma Prims.prop u474 mult); + assert (Monoid.left_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro_3 associativity_helper; assert (Monoid.associativity_lemma Prims.prop mult); - Monoid.intro_monoid Prims.prop u474 mult + Monoid.intro_monoid Prims.prop u464 mult let disjunction_monoid = - let u474 = FStar.Pervasives.singleton Prims.l_False in + let u464 = FStar.Pervasives.singleton Prims.l_False in let mult p q = p \/ q <: Prims.prop in let left_unitality_helper p = - (assert (mult u474 p <==> p); - FStar.PropositionalExtensionality.apply (mult u474 p) p) + (assert (mult u464 p <==> p); + FStar.PropositionalExtensionality.apply (mult u464 p) p) <: - FStar.Pervasives.Lemma (ensures mult u474 p == p) + FStar.Pervasives.Lemma (ensures mult u464 p == p) in let right_unitality_helper p = - (assert (mult p u474 <==> p); - FStar.PropositionalExtensionality.apply (mult p u474) p) + (assert (mult p u464 <==> p); + FStar.PropositionalExtensionality.apply (mult p u464) p) <: - FStar.Pervasives.Lemma (ensures mult p u474 == p) + FStar.Pervasives.Lemma (ensures mult p u464 == p) in let associativity_helper p1 p2 p3 = (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3)); @@ -437,12 +437,12 @@ let disjunction_monoid = FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3)) in FStar.Classical.forall_intro right_unitality_helper; - assert (Monoid.right_unitality_lemma Prims.prop u474 mult); + assert (Monoid.right_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro left_unitality_helper; - assert (Monoid.left_unitality_lemma Prims.prop u474 mult); + assert (Monoid.left_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro_3 associativity_helper; assert (Monoid.associativity_lemma Prims.prop mult); - Monoid.intro_monoid Prims.prop u474 mult + Monoid.intro_monoid Prims.prop u464 mult let bool_and_monoid = let and_ b1 b2 = b1 && b2 in Monoid.intro_monoid Prims.bool true and_ @@ -520,7 +520,7 @@ let _ = Monoid.intro_monoid_morphism Monoid.neg Monoid.disjunction_monoid Monoid.conjunction_monoid let mult_act_lemma m a mult act = forall (x: m) (x': m) (y: a). act (mult x x') y == act x (act x' y) -let unit_act_lemma m a u478 act = forall (y: a). act u478 y == y +let unit_act_lemma m a u468 act = forall (y: a). act u468 y == y unopteq type left_action (mm: Monoid.monoid m) (a: Type) = | LAct : diff --git a/tests/error-messages/Monoid.fst.output.expected b/tests/error-messages/Monoid.fst.output.expected index 1997ea79d94..e276faba323 100644 --- a/tests/error-messages/Monoid.fst.output.expected +++ b/tests/error-messages/Monoid.fst.output.expected @@ -345,8 +345,8 @@ let left_action_morphism f mf la lb = forall (g: ma) (x: a). lb.act (mf g) (f x) Module after type checking: module Monoid Declarations: [ -let right_unitality_lemma m u476 mult = forall (x: m). mult x u476 == x -let left_unitality_lemma m u476 mult = forall (x: m). mult u476 x == x +let right_unitality_lemma m u466 mult = forall (x: m). mult x u466 == x +let left_unitality_lemma m u466 mult = forall (x: m). mult u466 x == x let associativity_lemma m mult = forall (x: m) (y: m) (z: m). mult (mult x y) z == mult x (mult y z) unopteq type monoid (m: Type) = @@ -382,25 +382,25 @@ val monoid__uu___haseq: Prims.l_True /\ -let intro_monoid m u476 mult = Monoid.Monoid u476 mult () () () <: Prims.Pure (Monoid.monoid m) +let intro_monoid m u466 mult = Monoid.Monoid u466 mult () () () <: Prims.Pure (Monoid.monoid m) let nat_plus_monoid = let add x y = x + y <: Prims.nat in Monoid.intro_monoid Prims.nat 0 add let int_plus_monoid = Monoid.intro_monoid Prims.int 0 Prims.op_Addition let conjunction_monoid = - let u474 = FStar.Pervasives.singleton Prims.l_True in + let u464 = FStar.Pervasives.singleton Prims.l_True in let mult p q = p /\ q <: Prims.prop in let left_unitality_helper p = - (assert (mult u474 p <==> p); - FStar.PropositionalExtensionality.apply (mult u474 p) p) + (assert (mult u464 p <==> p); + FStar.PropositionalExtensionality.apply (mult u464 p) p) <: - FStar.Pervasives.Lemma (ensures mult u474 p == p) + FStar.Pervasives.Lemma (ensures mult u464 p == p) in let right_unitality_helper p = - (assert (mult p u474 <==> p); - FStar.PropositionalExtensionality.apply (mult p u474) p) + (assert (mult p u464 <==> p); + FStar.PropositionalExtensionality.apply (mult p u464) p) <: - FStar.Pervasives.Lemma (ensures mult p u474 == p) + FStar.Pervasives.Lemma (ensures mult p u464 == p) in let associativity_helper p1 p2 p3 = (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3)); @@ -409,26 +409,26 @@ let conjunction_monoid = FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3)) in FStar.Classical.forall_intro right_unitality_helper; - assert (Monoid.right_unitality_lemma Prims.prop u474 mult); + assert (Monoid.right_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro left_unitality_helper; - assert (Monoid.left_unitality_lemma Prims.prop u474 mult); + assert (Monoid.left_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro_3 associativity_helper; assert (Monoid.associativity_lemma Prims.prop mult); - Monoid.intro_monoid Prims.prop u474 mult + Monoid.intro_monoid Prims.prop u464 mult let disjunction_monoid = - let u474 = FStar.Pervasives.singleton Prims.l_False in + let u464 = FStar.Pervasives.singleton Prims.l_False in let mult p q = p \/ q <: Prims.prop in let left_unitality_helper p = - (assert (mult u474 p <==> p); - FStar.PropositionalExtensionality.apply (mult u474 p) p) + (assert (mult u464 p <==> p); + FStar.PropositionalExtensionality.apply (mult u464 p) p) <: - FStar.Pervasives.Lemma (ensures mult u474 p == p) + FStar.Pervasives.Lemma (ensures mult u464 p == p) in let right_unitality_helper p = - (assert (mult p u474 <==> p); - FStar.PropositionalExtensionality.apply (mult p u474) p) + (assert (mult p u464 <==> p); + FStar.PropositionalExtensionality.apply (mult p u464) p) <: - FStar.Pervasives.Lemma (ensures mult p u474 == p) + FStar.Pervasives.Lemma (ensures mult p u464 == p) in let associativity_helper p1 p2 p3 = (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3)); @@ -437,12 +437,12 @@ let disjunction_monoid = FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3)) in FStar.Classical.forall_intro right_unitality_helper; - assert (Monoid.right_unitality_lemma Prims.prop u474 mult); + assert (Monoid.right_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro left_unitality_helper; - assert (Monoid.left_unitality_lemma Prims.prop u474 mult); + assert (Monoid.left_unitality_lemma Prims.prop u464 mult); FStar.Classical.forall_intro_3 associativity_helper; assert (Monoid.associativity_lemma Prims.prop mult); - Monoid.intro_monoid Prims.prop u474 mult + Monoid.intro_monoid Prims.prop u464 mult let bool_and_monoid = let and_ b1 b2 = b1 && b2 in Monoid.intro_monoid Prims.bool true and_ @@ -520,7 +520,7 @@ let _ = Monoid.intro_monoid_morphism Monoid.neg Monoid.disjunction_monoid Monoid.conjunction_monoid let mult_act_lemma m a mult act = forall (x: m) (x': m) (y: a). act (mult x x') y == act x (act x' y) -let unit_act_lemma m a u478 act = forall (y: a). act u478 y == y +let unit_act_lemma m a u468 act = forall (y: a). act u468 y == y unopteq type left_action (mm: Monoid.monoid m) (a: Type) = | LAct :