-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_R_doc.Rmd
946 lines (787 loc) · 39.7 KB
/
my_R_doc.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
---
title: "R代码合集"
author: "Fan"
date: "2020年4月12日"
output:
html_document:
theme: cerulean
toc: yes
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,cache = T)
setwd("D:\\data_work\\R_sources\\my_code")
my_colors = c("royalblue","firebrick1","#FF9966","#66CC99","white","66CCCC","#3399CC")
```
## 简介
本文档记录一些实用的R代码
</br>
</br>
## 基本操作
```{r tibble,message=FALSE,warning=FALSE}
library(dplyr)
library(purrr)
library(kableExtra)
# extended summary for tibble
my_summary_tibble<-function(data,fun){ return( map(data,fun) %>% unlist() %>% as.vector() ) }
# transpose for tibble
my_t_tibble<-function(data,name,id){
temp<-t(data[,-which(colnames(data)==name)])
colnames(temp)<-data[name] %>% unlist() %>% as.vector()
return(as_tibble(temp,rownames=id))
}
xx<-tibble(name=letters[1:5],x=c(1:5),y=rnorm(5,mean=0,sd=1),z=sample(5,5))
xx %>% modify_at(c("y"),function(x) round(x,2)) %>%
kable() %>% kable_styling(bootstrap_options = "striped", full_width = F)
xx.summary<-tibble(id=colnames(xx)[-1],
mean=my_summary_tibble(xx[,-1],mean),
sd=my_summary_tibble(xx[,-1],sd),
sum=my_summary_tibble(xx[,-1],sum))
xx.summary %>% modify_at(c(-1),function(x) round(x,2)) %>%
kable() %>% kable_styling(bootstrap_options = "striped", full_width = F)
xx.transpose<-my_t_tibble(xx,name="name",id="id")
xx.transpose%>% modify_at(c(-1),function(x) round(x,2)) %>%
kable() %>% kable_styling(bootstrap_options = "striped", full_width = F)
xx.summary.row<-tibble(id=colnames(xx.transpose)[-1],
mean=my_summary_tibble(xx.transpose[,-1],mean),
sd=my_summary_tibble(xx.transpose[,-1],sd),
sum=my_summary_tibble(xx.transpose[,-1],sum))
xx.summary.row %>% modify_at(c(-1),function(x) round(x,2)) %>%
kable() %>% kable_styling(bootstrap_options = "striped", full_width = F)
```
## 可视化
### 每个病例的参数概览图(包括分类变量)
本来打算使用空矩阵构建热图来完成此需求,然而在空矩阵的情况下,图例放在下方会出现图例位置过度上移,
导致图片的重叠,尝试了很久后决定采用隐藏矩阵值且调整padding达到要求(padding参数挽救了这个“轮子”)
```{r variable_for_each, message=FALSE, warning=FALSE}
library(ComplexHeatmap)
library(circlize)
data_mat = matrix(rnorm(50,0,1), 1, 50)
colors = colorRamp2(c(0, 1000), c("white", "red"))
use_colors = c("#3399CC","#FF9966","#66CC99","white","66CCCC")
gap_wd = 3
anno_data = data.frame(class = c(rep("0",20),rep("1",25),rep("2",5)),
value = runif(50),
type_1 = rep(letters[1:2], 25),
type_2 = rep(c("1","3","2","1","2"),10))
anno_color = list(class = c("0" = use_colors[1], "1" = use_colors[2],"2" = use_colors[3]),
value = colorRamp2(c(0, 1), c("white", "red")),
type_1 = c("a" = use_colors[1], "b" = use_colors[2]),
type_2 = c("1" = use_colors[1], "2" = use_colors[2], "3"=use_colors[3]))
anno_params = list(legend_height = unit(1, "cm"))
ha = HeatmapAnnotation(df = anno_data,
col = anno_color,
annotation_legend_param = anno_params)
colnames(data_mat) = rep("A",50)
heatmap_1 = Heatmap(data_mat, col = colors, column_title = "Parameters for each case",
top_annotation = ha, top_annotation_height = unit(12, "mm"),
cluster_rows = FALSE, cluster_columns = FALSE,
show_heatmap_legend = F,
show_row_names = FALSE, show_column_names = FALSE)
draw(heatmap_1,annotation_legend_side = "bottom"
,padding = unit(c(50, 20, 20, 2), "mm"))
annotations = c("class","value","type_1","type_2")
for (element in annotations){
decorate_annotation(element, {grid.text(element, unit(-2, "mm"), just = "right", gp = gpar(fontsize=8))
grid.lines(c(0.4, 0.4), unit(c(0, 1), "native"), gp = gpar(col = use_colors[4], lwd = gap_wd))
grid.lines(c(0.9, 0.9), unit(c(0, 1), "native"), gp = gpar(col = use_colors[4], lwd = gap_wd))})
}
```
</br>
</br>
## 生存分析
### 计算iAUC
主要是使用R包risksetROC,计算的核心代码如下:
```{r iAUC, message=FALSE, warning=FALSE}
library(survival)
library(risksetROC)
library(survivalROC) # load the mayo data
data(mayo)
nobs <- NROW(mayo)
survival.time <-mayo$time/365
survival.status <- mayo$censor
M<-mayo$mayoscore4
## first find the estimated survival probabilities at unique failure times
surv.prob <- unique(survfit(Surv(survival.time,survival.status)~1)$surv)
fit0 <- coxph( Surv(survival.time,survival.status)
~ M, na.action=na.omit )
eta <- fit0$linear.predictor
model.score <- eta
utimes <- unique( survival.time[ survival.status == 1 ] )
utimes <- utimes[ order(utimes) ]
## find AUC at unique failure times
AUC <- rep( NA, length(utimes) )
for( j in 1:length(utimes) )
{
out <- CoxWeights( eta, survival.time, survival.status,utimes[j])
AUC[j] <- out$AUC
}
## integrated AUC to get concordance measure
iAUC <- IntegrateAUC( AUC, utimes, surv.prob, tmax=365 )
iAUC
```
</br>
### 时间依赖ROC的绘制
主要使用R包timeROC和ggplot2,绘制的核心代码如下:
```{r timeROC, message=FALSE, warning=FALSE}
library(timeROC)
library(ggplot2)
library(survivalROC) # load the mayo data
data(mayo)
survival.time <-mayo$time/365
survival.status <- mayo$censor
M<-mayo$mayoscore4
ROC.1<-timeROC(T=survival.time,
delta=survival.status,marker=M,
cause=1,weighting="marginal",
times=quantile(survival.time,probs=seq(0.2,0.8,0.02)),
iid=TRUE)
ROC.1
time_AUC<-data.frame(time=ROC.1$times,
AUC=ROC.1$AUC,
sd=ROC.1$inference$vect_sd_1,
AUC_upper=ROC.1$AUC+ROC.1$inference$vect_sd_1,
AUC_lower=ROC.1$AUC-ROC.1$inference$vect_sd_1)
ggplot(time_AUC,aes(x=time,y=AUC))+
geom_line(colour='red')+
scale_y_continuous(limits = c(0.5,1))+
geom_ribbon(aes(ymin = AUC_lower,ymax = AUC_upper),alpha = 0.16,fill="red")+
theme(panel.grid.major =element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))
```
</br>
### 特定时间点ROC曲线绘制
主要使用R包survivalROC和plotROC以及ggplot2,当然也可以使用timeROC的结果拿到特定时间点的ROC曲线数据进行绘制。绘制的核心代码如下:
```{r timeROC_2, message=FALSE, warning=FALSE}
library(survivalROC)
library(survival)
library(ggplot2)
library(plotROC)
data(mayo)
nobs <- NROW(mayo)
survT <-mayo$time/365
cens <- mayo$censor
M<-mayo$mayoscore4
### time: 1,3,5
sroc <- lapply(c(1, 3, 5), function(t){
stroc <- survivalROC(Stime = survT, status = cens, marker = M,
predict.time = t,
method = "KM" ## KM法
# method = "NNE", span = .25 * 350^(-.2) ## NE法
)
data.frame(TPF = stroc[["TP"]], FPF = stroc[["FP"]],
c = stroc[["cut.values"]],
time = rep(stroc[["predict.time"]], length(stroc[["FP"]])))
})
## combine data
sroclong <- do.call(rbind, sroc)
sroclong$time<-factor(sroclong$time)
## plot ROC
pROC<-ggplot(sroclong, aes(x = FPF, y = TPF, label = c, color = time)) +
geom_roc(labels = FALSE, stat = "identity",n.cuts = 20) +
style_roc()+
ggsci::scale_color_jco()
pROC+annotate("text",x = .75, y = .25, ## position of text
label = paste("AUC of 1 years =", round(calc_auc(pROC)$AUC[1], 2))) +
annotate("text",x = .75, y = .15, ## position of text
label=paste("AUC of 3 years =", round(calc_auc(pROC)$AUC[2], 2)))+
annotate("text",x = .75, y = .05, ## position of text
label=paste("AUC of 5 years =", round(calc_auc(pROC)$AUC[3], 2)))
```
</br>
### 生存分析三联图
```{r tri_plot, message=FALSE, warning=FALSE}
library(survival)
library(survivalROC)
library(dplyr)
library(ggplot2)
library(ComplexHeatmap)
data(mayo)
nobs <- NROW(mayo)
survival.time <-mayo$time
survival.status <- mayo$censor
M<-mayo$mayoscore4
x3=rnorm(length(M),6,1)
x4=rnorm(length(M),0,1)+x3
x5=rnorm(length(M),0,1)+x3
x6=rnorm(length(M),0,1)+x3
surv.prob <- unique(survfit(Surv(survival.time,survival.status)~1)$surv)
fit0 <- coxph( Surv(survival.time,survival.status)
~ M, na.action=na.omit )
fp <- fit0$linear.predictor
sur_dat<-tibble(fp=as.numeric(fp),
time=survival.time,
event=survival.status,
x1=mayo$mayoscore4,
x2=mayo$mayoscore5,
x3=x3,
x4=x4,
x5=x5,
x6=x6) %>%
arrange(fp)
sur_dat$patientid<-1:length(fp)
sur_dat$event=ifelse(sur_dat$event==0,'alive','death')
sur_dat$event=factor(sur_dat$event,levels = c("death","alive"))
exp_dat=sur_dat[,c(4:9)]
tmp=t(scale(exp_dat))
tmp[tmp > 1] = 1
tmp[tmp < -1] = -1
ha = HeatmapAnnotation(risk = anno_points(sur_dat$fp,axis = TRUE),
time = anno_points(sur_dat$time, axis = TRUE,
pch = 16, default.unit = "native",
gp = gpar(col=sur_dat$event)))
heatmap_1<-Heatmap(tmp, name = "value", cluster_columns = FALSE,
top_annotation = ha, top_annotation_height = unit(50, "mm"),
bottom_annotation_height = unit(3, "cm"))
draw(heatmap_1,padding = unit(c(5, 20, 5, 2), "mm"))
annotations = c("risk","time")
for (element in annotations){
decorate_annotation(element,
{grid.text(element, unit(-12, "mm"), just = "right", gp = gpar(fontsize=12))})
}
```
</br>
## 建模相关可视化
### 绘制ROC
**使用pROC包绘制的核心代码如下:**
```{r pROC,message=FALSE, message=FALSE, warning=FALSE}
library(pROC)
data(aSAH)
fit.model <- glm(outcome ~ s100b + ndka,
data=aSAH, family=binomial())
y_predict<-predict(fit.model,newdata=aSAH,type='response')
modelroc_1<-roc(aSAH$outcome,y_predict)
auc(modelroc_1)
plot(modelroc_1,col="royalblue",mar=c(2, 6, 2, 6),print.thres="best")
legend("bottomright", col=c("royalblue"), lwd=3, cex=0.75,
legend=c(paste("AUC=",round(auc(modelroc_1),3),sep="")))
```
</br>
**ROC曲线的对比:**
```{r pROC_2,message=FALSE}
rocobj1 <- plot.roc(aSAH$outcome, y_predict, mar=c(2, 6, 2, 6),
main="Statistical comparison", percent=TRUE, col="#1c61b6")
rocobj2 <- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col="#008600")
testobj <- roc.test(rocobj1, rocobj2)
text(50, 50, labels=paste("p-value =", format.pval(testobj$p.value)), adj=c(0, .5))
legend("bottomright", legend=c("S100B", "NDKA"), col=c("#1c61b6", "#008600"), lwd=2)
```
</br>
**Partial AUC:**
```{r pROC_3,message=FALSE}
plot.roc(aSAH$outcome, aSAH$s100b, # data
mar=c(2, 6, 2, 6),
percent=TRUE, # show all values in percent
partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial AUC (pAUC)
print.auc=TRUE, #display pAUC value on the plot with following options:
print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col="#1c61b6",
auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a polygon
max.auc.polygon=TRUE, max.auc.polygon.col="#1c61b622", # also show the 100% polygon
main="Partial AUC (pAUC)")
plot.roc(aSAH$outcome, aSAH$s100b,
mar=c(2, 6, 2, 6),
percent=TRUE, add=TRUE, type="n", # add to plot, but don't re-add the ROC itself (useless)
partial.auc=c(100, 90), partial.auc.correct=TRUE,
partial.auc.focus="se", # focus pAUC on the sensitivity
print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col="#008600",
print.auc.y=40, # do not print auc over the previous one
auc.polygon=TRUE, auc.polygon.col="#008600",
max.auc.polygon=TRUE, max.auc.polygon.col="#00860022")
```
</br>
**pROC funtion ggroc, based on ggplot2:**
```{r pROC_4,message=FALSE}
library(ggplot2)
data(aSAH)
rocobj <- roc(aSAH$outcome, aSAH$s100b)
rocobj2 <- roc(aSAH$outcome, aSAH$wfns)
rocobj3 <- roc(aSAH$outcome, aSAH$ndka)
g <- ggroc(rocobj, alpha = 0.8, colour = "red", linetype = 2, size = 1)
g + theme_bw() + ggtitle("My ROC curve") +
geom_segment(aes(x = 1, xend = 0, y = 0, yend = 1), color="grey", linetype="dashed") +
theme(plot.margin=unit(c(1,6,2,6),'lines'))
# Multiple curves:
g.list <- ggroc(list(s100b=rocobj, wfns=rocobj2, ndka=rocobj3))
# This is equivalent to using roc.formula:
roc.list <- roc(outcome ~ s100b + ndka + wfns, data = aSAH)
g.list <- ggroc(roc.list)
g.list + theme_classic()
# changing multiple aesthetics:
g5 <- ggroc(roc.list, aes=c("linetype", "color"))
g5
# multiple facet
g.list + facet_grid(.~name) + theme_bw() +
theme(legend.position="none",plot.margin=unit(c(6.6,1,6.6,1),'lines'))
# To have all the curves of the same color, use aes="group":
g.group <- ggroc(roc.list, aes="group")
g.group + facet_grid(.~name) + theme_bw() +
theme(plot.margin=unit(c(6.6,1,6.6,1),'lines'))
```
</br>
**plotROC, based on ggplot2:**
```{r ploptROC,message=FALSE}
library(ggplot2)
library(plotROC)
library(pROC) # load data aSAH
data(aSAH)
fit.model <- glm(outcome ~ s100b + ndka,
data=aSAH, family=binomial())
y_predict<-predict(fit.model,newdata=aSAH,type='response')
data_test <- data.frame(outcome=aSAH$outcome,model=y_predict,ndka=aSAH$ndka)
basic_plot <- ggplot(data_test, aes(d = outcome, m = model))+
geom_roc(labels = FALSE,colour=my_colors[1])
basic_plot + style_roc() +
annotate("text", x = .75, y = .25, ## position of text
label = paste("AUC =", round(calc_auc(basic_plot)$AUC, 2))) +
geom_segment(aes(x = 1, xend = 0, y = 1, yend = 0), color="grey", linetype="dashed")+
ggtitle("Using original method") +
theme(plot.margin=unit(c(1,6,2,6),'lines'))
roc_model<-roc(aSAH$outcome,y_predict)
data_roc<-data.frame(TPF = roc_model$sensitivities,
FPF = 1-roc_model$specificities,
c = roc_model$thresholds)
ggplot(data_roc, aes(x = FPF, y = TPF, label = c)) +
geom_roc(stat = "identity",colour=my_colors[1],labels = FALSE) + style_roc()+
ggtitle("Using sensitivities & specificities") +
theme(plot.margin=unit(c(1,6,2,6),'lines'))
ggplot(data_roc, aes(x = FPF, y = TPF, label = c)) +
geom_smooth(method=lm, formula=y~poly(x,20),se=FALSE, color=my_colors[1], size=1)+
geom_segment(aes(x = 0, xend = 0, y = 0, yend = 0.125), color=my_colors[1],size=1)+
geom_segment(aes(x = 1, xend = 0, y = 1, yend = 0), color="grey", linetype="dashed")+
ggtitle("Using smooth line") +
theme_bw()+
theme(plot.margin=unit(c(1,6,2,6),'lines'))
# Mulitiple ROC
longtest <- melt_roc(data_test, "outcome", c("model", "ndka"))
ggplot(longtest, aes(d = D, m = M, color = name))+
geom_roc(labels = FALSE) + style_roc() +
theme(plot.margin=unit(c(1,2,1,2),'lines'))
ggplot(longtest, aes(d = D, m = M, color = name)) +
geom_roc(labels = FALSE) +
style_roc()+
facet_wrap(~name)+
ggsci::scale_color_lancet()+
theme(plot.margin=unit(c(3,0,3,0),'lines'))
```
</br>
**plotROC, 交互式作图:**
```{r ploptROC_interactive,message=FALSE,fig.keep='none', results = 'asis'}
library(ggplot2)
library(plotROC)
library(pROC) # load data aSAH
data(aSAH)
fit.model <- glm(outcome ~ s100b + ndka,
data=aSAH, family=binomial())
y_predict<-predict(fit.model,newdata=aSAH,type='response')
data_test <- data.frame(outcome=aSAH$outcome,model=y_predict,ndka=aSAH$ndka)
basic_plot <- ggplot(data_test, aes(d = outcome, m = model))+
geom_roc(labels = FALSE,colour=my_colors[1])
fine_plot <- basic_plot + style_roc() +
annotate("text", x = .75, y = .25, ## position of text
label = paste("AUC =", round(calc_auc(basic_plot)$AUC, 2))) +
geom_segment(aes(x = 1, xend = 0, y = 1, yend = 0), color="grey", linetype="dashed")+
ggtitle("Interactive Plots")
cat(
export_interactive_roc(fine_plot,
prefix = "a")
)
```
## 拟合曲线及置信区间
### 拟合曲线及公式
```{r, warning=F}
lm_eqn = function(data){
x1<-data$x
x2<-x1*x1
y<-data$y
m=lm(y ~ x1+x2)
eq <- substitute(italic(y) == a + b %.% italic(x) + c %.% italic(x)^2*","~~italic(r)^2~"="~r2,
list(a = as.character(format(coef(m)[1], digits = 3)),
b = as.character(format(coef(m)[2], digits = 3)),
c = as.character(format(coef(m)[3], digits = 3)),
r2 = as.character(format(summary(m)$r.squared, digits = 3))))
as.character(as.expression(eq))
}
# creat the data and base plot
x1<-c(seq(1,10,1))
y1<-2*x1*x1+3*x1+5+rnorm(10,0,5)
dat<-data.frame(x=x1,y=y1)
p <- ggplot(dat,aes(x=x,y=y)) + geom_point()
# draw the line and function
p + stat_smooth(method='lm',formula = y~poly(x,2),colour='red') +
scale_x_continuous(limits = c(1,19), breaks = c(seq(1,19,b=2))) +
theme(axis.text=element_text(colour = 'black',size = 12), axis.title=element_text(size = 14)) +
annotate("text", x=6, y=20, label=lm_eqn(dat), hjust=0, size=5,family="Times",parse=TRUE)
```
上述需求其实可以用basicTrendline包实现(model参数选定不同的值可以得到不同的拟合模型),代码如下:
```{r,warning=FALSE,message=FALSE}
x<-dat$x
y<-dat$y
library(basicTrendline)
trendline(x,y,model="line3P", summary=TRUE, paramDigit=10, legendPos="topleft",linecolor="red")
```
补充一个:ggpmisc也可以呈现公式。
### 将两组数据的三个时间点测量值进行趋势展示
```{r}
# 数据1的原始数据
y<-c(30,50,40)
sd<-c(3,7,4)
x<-c(1,2,3)
dat<-tibble(x=x,y=y)
# 拟合曲线,得到公式,然后用于模拟中间的点
p <- ggplot(dat,aes(x=x,y=y))+
geom_point()+
stat_smooth(method='lm',formula = y~poly(x,2),colour='red') +
scale_x_continuous(limits = c(0,4)) +
scale_y_continuous(limits = c(0,60)) +
theme(axis.text=element_text(colour = 'black',size = 12), axis.title=element_text(size = 14)) +
annotate("text", x=1, y=20, label=lm_eqn(dat), hjust=0, size=5,family="Times",parse=TRUE)
x_<- 100:300
df_1<-tibble(x=x_) %>%
mutate(x=x/100, y=-20+65*x-15*x*x, sd=-8+14.5*x-3.5*x*x, y_1=y-sd, y_2=y+sd)
point_df_1<-tibble(x=c(1,2,3),y=c(30,50,40))
# 模拟数据2
point_df_2<-tibble(x=c(1,2,3),y=c(20,40,30))
df_2<-df_1 %>%
mutate(x=x, y=y-10, y_1=y_1-10, y_2=y_2-10)
ggplot(df_1,aes(x=x,y=y))+
geom_line(colour='red')+
geom_ribbon(aes(ymin = y_1,ymax = y_2),alpha = 0.16,fill="red")+
geom_point(data=point_df_1)+
scale_y_continuous(limits = c(0,60))+
scale_x_continuous(breaks = c(1,2,3))+
theme(panel.grid.major =element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))+
geom_line(data=df_2,colour='blue')+
geom_ribbon(data=df_2,aes(ymin = y_1,ymax = y_2),alpha = 0.16,fill="royalblue")+
geom_point(data=point_df_2)
```
## 指数index或得分score在个样本中的数值展示
```{r}
ddf<-tibble(x=c(1:100),
y=abs(rnorm(100,1,1)),
group=as.factor(rep(c(1,2),50))) %>%
arrange(desc(y))
ddf$x<-c(1:100)
ggplot(ddf,aes(x=x,y=y,fill=group))+
geom_bar(stat="identity", width=1)+
theme(panel.grid.major =element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))
```
</br>
## 统计可视化
推荐ggstatsplot这个包,非常棒的统计可视化工具! 可参考:[ggstatsplot](https://indrajeetpatil.github.io/ggstatsplot/)
需R的3.6版本及以上。做出来的图比如:
<img src="D:/data_work/R_sources/my_code/Plots/stats_1.png"></img>
## R和Rmarkdown的图片管理
图片管理方面,确实走了很多弯路,此处总结一下规范的管理方法。
首先提一点,在R的for循环中输出图片,除了保存到本地之外,其实可以print出来的,比如在循环中使用ggplot作图,可以print一下作图结果,就会显示多张图片。
### 使用R将图片保存到本地
按照常规方法即可,如普通plot直接使用“png()...plot()...dev.off()”模式,似乎不太好写成单独的函数;ggplot系列则使用ggsave进行保存即可;此外,也可以使用鼠标点击Export导出图片。
</br>
### 使用R从本地读取图片并展示
推荐使用EBImage包的readImage方法读取本地图片,然后使用display方法展示图片。详细见下文中介绍的“代码读取展示”方法。
</br>
### Rmarkdown中展示本地图片的方法
在Rmarkdown中展示本地图片有2种方法:markdown/html展示 和 代码读取展示。
#### markdown/html展示
最简单粗暴的方法是,使用 "感叹号+中括号+小括号"(不需要引号,括号内的链接也不需要引号),在小括号内填入本地资源路径即可。但是这种方式无法控制图片的大小和排版,一般考虑html式加载图片。
html里有各种方法都可以加载图片,但建议使用标准的方法,即img标签法。在img标签的src属性中填入本地图片路径或网络资源路径,然后可以再style中修改css设置图片大小。如果需要对多张图片排版,也有很多种方式,但推荐使用table进行排版,table排版最简单。总之,可以再rmarkdown里像html里那样各种操作。
</br>
#### 代码读取展示
这里踩了很多坑!代码读取展示并不推荐,毕竟都展示图片了,没必要和代码牵扯上关系。但是,有两种情况可以借助代码实现更好的展示:一个是渲染出供浏览界面的图片,一个是将图片和作图融合。关于第一个,可以使用EBImage包的readImage方法读取本地图片,然后使用display方法展示图片,其中display中有个method参数,若设置为browser则为浏览模式,而设置为raster则为普通渲染模式。 代码示例如下(实际未运行):
```{r,message=FALSE,warning=FALSE}
library(EBImage)
pic1 <- readImage("Plots/polar_2.PNG")
pic2 = flop(pic1)
display(combine(list(pic1,pic2)),method="browser")
```
第二种情况,如何将已有图片与作图融合呢?可以使用magick读取图片,然后使用ggplotify这个包将图片对象转成ggplot对象。示例代码如下:
```{r,message=FALSE,warning=FALSE}
library(ggplot2)
library(ggplotify)
library(magick)
library(shadowtext)
pic<-image_read("Plots/polar_1.PNG")
p<-as.ggplot(pic)
p + geom_shadowtext(x=0.86,y=0.1,size=5,label="This is ggplot text")
```
R是一门统计语言,不是视觉处理语言,常规的方法如graphics包支持的作图都是基于坐标系,因此渲染出来的图片一般都有坐标系存在。曾尝试使用readPNG然后使用rasterImage方法渲染图片,但发现得到的图片带有坐标系,又不知道如何隐藏坐标系。当然应该有高级的方法实现,这可能得了解R可视化的底层原理才行。
</br>
### Rmarkdown中作图展示的方法
首先必须指出一个容易犯的错误:不能使用inline模式插入图片!也就是两个单反点内部写个r然后加上code的形式,如果code是作图结果,那么是渲染不出来的!这里code如果是EBImage的browser模式,虽然能渲染出图片,但是frame框会很宽,完全无法控制排版!
Rmarkdown中作图展示,请使用代码正常展示!如果想插入文字后展示,那么请新开一个小的chunk进行展示!
</br>
### 作图排版的技巧
这里不讨论Rmarkdown中使用html方法排版图片的情况,主要讨论代码中如何对图片排版。数据准备如下:
```{r,message=FALSE,warning=FALSE}
library(ggplot2)
p1 <- ggplot(mpg, aes(displ, hwy)) + geom_point() + geom_rug()
p2 <- ggplot(faithful, aes(x=eruptions, y=waiting)) + geom_density_2d() + geom_point()
p3 <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) + geom_bar(width = 1) + coord_polar()
p4 <- ggplot(mtcars, aes(x = factor(cyl),fill=factor(cyl))) + geom_bar(width = 1) + coord_polar()
p5 <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()
library(ggpubr)
p6 <- ggplot(mpg, aes(x=displ, y=hwy))+
geom_point()+
stat_smooth(method="lm",se=TRUE)+
stat_cor(data=mpg, method = "pearson")
p7 <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width))+
geom_point(aes(color = Species))+
geom_smooth(aes(color = Species, fill = Species))+
facet_wrap(~Species, ncol = 3, nrow = 1) # +
# scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))+
# scale_fill_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
my_comparisons <- list(c("setosa", "versicolor"), c("versicolor", "virginica"),c("setosa", "virginica"))
p8 <- ggboxplot(iris, x = "Species", y = "Sepal.Length",
color = "Species", palette = c("#00AFBB", "#E7B800", "#FC4E07"),add = "jitter")+
stat_compare_means(comparisons = my_comparisons, method = "t.test")
p9 <- ggplot(mtcars, aes(x=c(1:32), y=mpg)) + geom_point(color='red',size=1) +
geom_segment( aes(x=c(1:32), xend=1:32, y=0,yend=mpg))+
ggtitle("P9")
p10 <- ggplot(mtcars, aes(x=mpg, y=disp, size=cyl/3,color=carb)) + geom_point(alpha=0.4) +
scale_size_continuous( trans="exp", range=c(1, 10)) +
ggtitle("P10")
library(ggExtra)
p11 <- ggMarginal((ggplot(mtcars)+geom_point(aes(mpg, disp))+ ggtitle("P11")), type="histogram")
library(rattle)
cities <- c("Canberra", "Darwin", "Melbourne", "Sydney")
ds <- subset(weatherAUS, Location %in% cities & ! is.na(Temp3pm))
p12 <- ggplot(ds, aes(Temp3pm, colour=Location, fill=Location)) + geom_density(alpha=0.3) +
ggtitle("P12")
```
代码对图片排版后,多张图合并成了一张图,不可分割(html排版得到的图片是可以分开保存的)。排版图片主要有两种方法,第一种是熟知的ggpubr包中的ggarrange方法排版ggplot系列图片,代码示例如下:
```{r,fig.height=5,message=FALSE,warning=FALSE}
library(ggpubr)
ggarrange(p1, p2, p3, p4, labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)
```
第二种方法是使用cowplot,代码示例如下:
```{r,message=FALSE,warning=FALSE}
library(cowplot)
ggdraw() +
draw_plot(p5, 0, .5, .5, .5) +
draw_plot(p6, .5, .5, .5, .5) +
draw_plot(p7, 0, 0, .5, .5) +
draw_plot(p8, .5, 0, .5, .5) +
draw_plot_label(c("A", "B", "C", "D"), c(0, 0.5, 0, 0.5), c(1, 1, 0.5, 0.5), size = 15)
# notice: left and bottom is 0
```
第三种是使用patchwork,这个最灵活,可参考:[patchwork](https://patchwork.data-imaginist.com/index.html)。示例代码如下:
```{r,fig.height=6,message=FALSE,warning=FALSE}
library(patchwork)
p9 + plot_spacer() + p10 + plot_spacer()+ p11 + p12
(p9 / p11) | (p10 / p12)
p9 + p7 + p10 + p8 +
plot_layout(widths = c(1,3))
layout <- "
AAAA##
BBCCCC
BBDDEE
"
p7 + p10 + p8 + p5 + p6 +
plot_layout(design = layout)
layout <- c(
area(t=5, l=1, b=9, r=5),
area(t=3, l=3, b=7, r=7),
area(t=1, l=5, b=5, r=9)
)
p9 + p10 + p12 +
plot_layout(design = layout)
# legned
p5 + p6 + p7 + p8 +
plot_layout(guides = "collect")
p6 + p7 + p8 + guide_area() +
plot_layout(guides = "collect")
```
## 维恩图
当集合较多时,常规维恩图不够直观,可考虑如下可视化方法。当然,实现该方法,除了下述代码中使用的UpSetR包以外,还有ComplexHeatmap包也是可以实现的,可参考:[ComplexHeatmap之UpSet](https://jokergoo.github.io/ComplexHeatmap-reference/book/upset-plot.html)。此外,ggplot扩展系列的ggupset也可以实现ggplot版本的集合图(以及ggplot扩展系列的ggVennDiagram可以画ggplot版的维恩图)。
```{r,message=FALSE,warning=FALSE}
library(UpSetR)
require(ggplot2)
require(dplyr);
require(gridExtra)
require(grid)
input <- c(
'cancer1'= 1578, 'cancer2' = 1284, 'cancer3' = 2488,
'cancer1&cancer2' =205, 'cancer1&cancer3' = 828,
'cancer2&cancer3' =589,'cancer1&cancer2&cancer3' =120
)
data <- fromExpression(input)
upset(data, nsets = 9, sets = c('cancer1', 'cancer2','cancer3'), keep.order = TRUE,
point.size = 5, line.size = 1.3, mainbar.y.label = "IntersectionSize", sets.x.label = "",
mb.ratio = c(0.60, 0.40), text.scale = c(2, 2, 0.5, 0.5,2, 2))
```
## 创建包和文档
### 创建包的命令和方法
建议使用Rstudio自带的创建包的框架,即:点击File -> New Project,然后选择New Directory,接着选择R Package,然后对DESCRIPTION文件进行适当修改(在RStudio右边Files里打开)。
创建R代码后,可以借助roxygen创建文档注释(用于生成文档),RStudio的快捷键来实现:Ctrl+Shift+Alt+R(光标放在函数名上)。
具体的可稍微参考:[如何快速写一个R包](https://www.bioinfo-scrounger.com/archives/546/)。
另外一些常用的命令如下:
```{r,eval=FALSE}
# Generate Rmd
library(roxygen2)
roxygenize(getwd())
# remove the old package
detach(package:FanCodeV1, unload=TRUE)
remove.packages("FanCodeV1")
# build the new package
buid_CMD<-paste("R CMD build",getwd())
system(buid_CMD)
# install_CMD<-paste(getwd(),"/FanCodeV1_0.1.0.tar.gz",sep="")
# install.packages(install_CMD, repos=NULL, type="source")
```
构建和安装自己的R包,上述命令的install得到的文档似乎打不开,建议使用这个方法:点击 'Build' -> 'Install and Restart', 或使用快捷键 "Ctrl+Shift+B"。
### 渲染Rmarkdown文档的命令
```{r,eval=FALSE}
library(rmarkdown)
render("../../temp/dashboard_2.Rmd")
```
</br>
## 数据库资源
### 文献管理工具
RefManageR基于BibTeX,比NoteExpress和EndNote要灵活很多。
BibTeX是LaTeX中进行文献管理的扩展。BibTeX的使用可参考:[使用BibTeX生成参考文献列表](https://www.latexstudio.net/archives/5594) 或 [BibTeX的使用方法](https://www.cnblogs.com/parrynee/archive/2010/03/02/1676369.html),尤其是前面那个讲得不错。
而LaTeX的学习,可以稍微看看:[如何在1小时内快速入手LaTeX](https://www.zhihu.com/question/268569440) 以及[LaTex 入门](https://blog.csdn.net/cocoonyang/article/details/78036326)。除非必要,笔者并不推荐认真学习LaTeX规则,因为真的挺复杂的,大致了解下就行。
最重要的是RefManageR的参考手册:[SUser Manual for R package RefManageR](https://cran.r-project.org/web/packages/RefManageR/vignettes/manual.pdf),这个在平时使用的时候可以翻一翻。
贴几个示例代码:
```{r,message=FALSE,warning=FALSE}
library(RefManageR)
bib <- BibEntry(bibtype="Article", key = "barry1996", date = "1996-08",
title = "A Diagnostic to Assess the Fit of a Variogram to Spatial Data",
author = "Ronald Barry", journaltitle = "Journal of Statistical Software",
volume = 1, number = 1)
bib[author = "Barry"]
file <- system.file("Bib", "biblatexExamples.bib", package = "RefManageR")
bib <- ReadBib(file, check = FALSE) ## bibtype有多种,字段不统一
bibs<-bib[c("yoon","weinberg")]
print(bibs, .opts = list(check.entries = FALSE
,bib.style = "numeric"
,first.inits = F
,max.names = 6
,sorting = "nyt"
,style = "markdown"
))
bib[bibtype="Article"][c(1:3)]
bib[author = "Yoon"]$author$family[c(1:3)]
```
```{r,results = "asis"}
bib_Liu <- ReadPubMed("X. Shirley Liu", database = "PubMed")
# unclass(a)
bib_Liu$month<-NULL
print(bib_Liu[c(1:3)], .opts = list(check.entries = FALSE
,bib.style = "numeric"
,first.inits = T
,max.names = 5
,sorting = "nyt"
,style = "markdown"
))
```
当然,可以使用正则表达式对上述结果进行进一步加工(比如去除括号,加粗字体),让其符合某些杂志社的引用规范。
值得一提的是,ReadPubMed和某些数据库的引用结果的返回结果里是有摘要的,可以用这个进行个性化搜索,定制自己的文献搜索引擎。
### NCBI数据库资源
NCBI提供了丰富的接口,文档可参考:[文档主目录](https://www.ncbi.nlm.nih.gov/books/NBK25501/) 、 [方法说明和参数设置](https://www.ncbi.nlm.nih.gov/books/NBK25499/) 、 [返回值的可选类型和模式](https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly) 以及 [九种接口简介](https://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.The_Nine_Eutilities_in_Brief)
笔者经过测试后发现,拉取10000条fetch数据或summary数据时,R很吃力,而Python则相对轻松,因此,笔者将NCBI数据获取的阵地转移到了Python环境中,当然小规模数据也可以使用R。
以下为R代码示例:
```{r,eval=FALSE}
library(httr)
library(xml2)
library(dplyr)
#-------------------search------------------------
term <- 'colon+cancer'
urls <- parse_url("https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi")
urls$query <- list(db='pubmed', term=term, usehistory='y', retmax='5')
search_results<- urls %>% build_url %>% GET()
content_main<-read_xml(content(search_results, "text"))
content_children<-xml_children(content_main)
ids <- content_children[6] %>% xml_children %>% xml_text
QueryKey <- content_children[4] %>% xml_text
webenv <- content_children[5] %>% xml_text
#-------------------fetch------------------------
urls <- parse_url("https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi")
urls$query <- list(Query_key=QueryKey, WebEnv=webenv, db='pubmed',
rettype="abstract", retmode="text", retmax='5')
fetch_results<-urls %>% build_url %>% GET()
fetch_results_text<-content(fetch_results, "text")
# write.table(fetch_results_text,'fetch_results.txt',col.names=F)
#-------------------summary------------------------
urls <- parse_url("https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi")
urls$query <- list(Query_key=QueryKey, WebEnv=webenv, db='pubmed',
retmode="text", retmax='5', version='2.0')
summary_results<- urls %>% build_url %>% GET()
summary_results_xml<-read_xml(content(summary_results, "text"))
# write.table(summary_results_xml,'summary_results.txt',col.names=F)
```
网上看到的另一个写法如下(本质上是一样的),来源:[R语言网络爬虫之Pubmed API的使用](https://cloud.tencent.com/developer/article/1477089)
```{r,eval=FALSE}
library(XML)
library(RCurl)
path='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi'
web=getForm(path,db='pubmed',term='SI[gene]+AND+cancer',usehistory='y',RetMax='10',RetStart='1')
doc<-xmlParse(web,asText=T,encoding="UTF-8")
webenv<-sapply(getNodeSet(doc,"//WebEnv"),xmlValue)
key<-sapply(getNodeSet(doc,"//QueryKey"),xmlValue)
path1='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi'
res=getForm(path1,Query_key=key,db='pubmed',WebEnv=webenv,rettype='abstract',retmode='text',RetMax='10')
# write.table(res,'D:\\data_others\\examle.txt',col.names=F)
```
## 资源链接
生信搜图:[http://viziometrics.org/](http://viziometrics.org/)
医学专用搜图:[https://openi.nlm.nih.gov/](https://openi.nlm.nih.gov/)
搜索相似文献(投稿、论文引用、找审稿人):[http://jane.biosemantics.org/](http://jane.biosemantics.org/)
电脑里下了一些速查表,其中有一个是不分领域的表集合,格式是md后缀的,可以用jupyter notebook打开查看。
## 其他
### 读取数据
读取数据时(如使用read.csv),将check.names设置为FALSE,就可保留表头的横杠,而不至于变成点。
可将stringsAsFactors 设置为FALSE,就可以保留string类型。
### 读取网上的资源
示例:
```{r,eval=FALSE}
read.table(curl("http://raw.githubusercontent.com/ebecht/MCPcounter/master/Signatures/probesets.txt"),
sep="\t",stringsAsFactors=FALSE,colClasses="character")
```
### 手动scale与pheatmap的scale
小样本时,颜色上有些细微差别,原因在于pheatmap的调色板考虑了对称性,即保证调色板的中心是0。而手动scale可能会出现正方向最大值和负方向最大值的绝对值并不相等,以致于调色板中心不是0。所以,虽然scale后数值没变,但是颜色有偏移。
pheatmap是可以设置调色板的,可以参考:[不同数据集画出的热图,用同样的颜色区间上色](https://mp.weixin.qq.com/s?__biz=MzI5NjUyNzkxMg==&mid=2247485121&idx=1&sn=1f13c083ba9b7fe801d860aedcd60d34&chksm=ec43b786db343e9021d46240f1eda362a7a6d1739b398a6061f9d70178d374c0668811ec5c9c&mpshare=1&scene=1&srcid=0425VfqJCXj2WJ4BjobljLeI&sharer_sharetime=1587806402954&sharer_shareid=51900005c2a3ce086c759ed67202d273&key=111d5d7ed497d5962489157d76a0d21f578bda72ef81b5d74bc6d59acab1a6ab44d66de2d2c91434c2b3420d71c7437a33395a025705ef11452eddb63847d72eb9603e83b0fdb9ac79c9540dfa9d77e4&ascene=1&uin=NzMxMDI1MDEy&devicetype=Windows+10+x64&version=62090070&lang=zh_CN&exportkey=AbnYOPxVsZElNGkrEnZ3zmw%3D&pass_ticket=5A8B8bZ1UfC6%2BkmBzQVtMU111ebEpetNGuypfi39d5E7I%2Fya2g%2BD7zz%2F9sSATCyh)
另外,其实pheatmap的出图是可以保存到变量里的,出图也可以像ggplot那样沉默化(使用参数silent即可)。
### 美化base plot
prettyB这个包可以,可参考:[base plot出的图,富有时代感!这个包,让你穿越回9102](https://mp.weixin.qq.com/s?__biz=MzI5NjUyNzkxMg==&mid=2247488367&idx=1&sn=680d7cf392b52da1517b6c61b716c8b7&chksm=ec43a228db342b3e31ce0a75c2173dab08f69269fb44849149913c708a6072c3f943ec335554&mpshare=1&scene=1&srcid=0425BHZVrkVbMnpMgyELF4uU&sharer_sharetime=1587793809406&sharer_shareid=51900005c2a3ce086c759ed67202d273&key=5a373e833a8cf09c7e3f7bbfd2462c57def74b043b910b810bd35ec7a4bb07acafecb3c38b9ab5ac8c1032cf96f8476ed5d4425fa2c3c10d2152b93f784743f3a888daa685b5403ee7e38ea963757b19&ascene=1&uin=NzMxMDI1MDEy&devicetype=Windows+10+x64&version=62090070&lang=zh_CN&exportkey=AWrAf43LLB1maw8ELnjSRnM%3D&pass_ticket=5A8B8bZ1UfC6%2BkmBzQVtMU111ebEpetNGuypfi39d5E7I%2Fya2g%2BD7zz%2F9sSATCyh)
ggfree这个包也可以看看,可参考:[ggfree:试图让你摆脱ggplot2](https://mp.weixin.qq.com/s?__biz=MzI5NjUyNzkxMg==&mid=2247488421&idx=1&sn=d5c7ab88c75628cafe13a601e2c7c81f&chksm=ec43a2e2db342bf4b73f6e2641ae83e51ec08e3e20ba2e22de33782befa510c82ce5f97bc0a1&mpshare=1&scene=1&srcid=0422Ubw1We0AEEWt8xQMkI16&sharer_sharetime=1587793924942&sharer_shareid=51900005c2a3ce086c759ed67202d273&key=99c11556750d17516c5d3301ad3efa5c43b4baa0a960f9afae91a6a064a0325fbec3f1a854b6d306a534b2ff2d9ee96361dd08f2966e9034d909a5c98636ce1f686fd4d634733db3a0c2bea0474513e8&ascene=1&uin=NzMxMDI1MDEy&devicetype=Windows+10+x64&version=62090070&lang=zh_CN&exportkey=AaJi1EQ0DNsU3guqgtmopIg%3D&pass_ticket=5A8B8bZ1UfC6%2BkmBzQVtMU111ebEpetNGuypfi39d5E7I%2Fya2g%2BD7zz%2F9sSATCyh)
纹理填充代替颜色,可参考:[不想画彩图了,用纹理填充吧,省掉好多版面费](https://mp.weixin.qq.com/s?__biz=MzI5NjUyNzkxMg==&mid=2247488059&idx=1&sn=fcb5fd219508fbd05064613360868926&chksm=ec43a37cdb342a6a667edac14ca3d291fa25edd1c9f7149fed49dd9b48390e64ffe664ead0e5&mpshare=1&scene=1&srcid=0422yhBZVPxX75E5FX0rLw1i&sharer_sharetime=1587794007603&sharer_shareid=51900005c2a3ce086c759ed67202d273&key=cac8859db214b542073d9851f1c3b7bec2b89d28c5717c476511d31a94e0c1a8972b1db6db0542d08632c42e490eac6aaaa4639fcbaef340c284674283e805615739c39261f899b3f387b3bbfba9641b&ascene=1&uin=NzMxMDI1MDEy&devicetype=Windows+10+x64&version=62090070&lang=zh_CN&exportkey=ASN%2FzGwaqTn%2FXJGPmty6I%2Fo%3D&pass_ticket=5A8B8bZ1UfC6%2BkmBzQVtMU111ebEpetNGuypfi39d5E7I%2Fya2g%2BD7zz%2F9sSATCyh)
### R中的正则表达式
可参考:[字符串处理与正则表达式](https://zhuanlan.zhihu.com/p/29807307)
### 更新R版本
可参考:[如何更新R版本及Rstudio](https://blog.csdn.net/weixin_41859179/article/details/97570369)
```{r,eval=FALSE}
library(installr)
updateR()
```
### 安装包的一些用法:
```{r github,eval=FALSE}
install_github("ebecht/MCPcounter",ref="master", subdir="Source")
```
github安装显示无法打开URL时,可以复制相应的URL(api.github.com/repos/...),然后自己去浏览器里下载,然后本地安装。