-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathanalyzevisium.py
46 lines (35 loc) · 1.06 KB
/
analyzevisium.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# %%
import anndata
import pandas as pd
import scanpy as sc
from PyCoGAPS.analysis_functions import *
from PyCoGAPS.parameters import *
from PyCoGAPS.pycogaps_main import CoGAPS
# %%
# %%
cogapsresult = anndata.read_h5ad("data/visiumresult50k.h5ad")
adata = cogapsresult
# %%
import numpy as np
path = "data/VI_116_4"
adata = sc.read_visium(path)
adata.obs["Pattern1"] = cogapsresult.var["Pattern1"]
adata.obs["Pattern2"] = cogapsresult.var["Pattern2"]
adata.obs["Pattern3"] = cogapsresult.var["Pattern3"]
adata.obs["Pattern4"] = cogapsresult.var["Pattern4"]
adata.obs["Pattern5"] = cogapsresult.var["Pattern5"]
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, flavor="seurat")
sc.pp.pca(adata)
sc.pl.pca(adata)
sc.pl.pca_variance_ratio(adata, log=True)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
sc.tl.leiden(adata, key_added="clusters", resolution=0.5)
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8, 8)
sc.pl.spatial(
adata,
color=["Pattern1", "Pattern2", "Pattern3", "Pattern4", "Pattern5"],
)