forked from adam900710/btrfs-fuse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvolumes.c
841 lines (747 loc) · 22.1 KB
/
volumes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
// SPDX-License-Identifier: MIT
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/limits.h>
#include <uuid.h>
/*
* For basic MIN()/MAX(), but it's not as good as kernel min()/max(),
* thus we shouldn't use anything like MIN(x++,y).
*/
#include <sys/param.h>
#include "compat.h"
#include "volumes.h"
#include "super.h"
#include "messages.h"
#include "metadata.h"
#include "ctree.h"
#include "libs/raid56.h"
/*
* This is for SINGLE/DUP/RAID1C*, which is purely mirror based.
*
* No stripe split is needed.
*/
static int mirrored_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_num);
/*
* For RAID0/RAID10, which is pure stripe based with mirrors, no pairty nor
* stripe rotation.
*/
static int simple_stripe_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_nr);
/* For RAID5/6 */
static int raid56_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_nr);
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
[BTRFS_RAID_SINGLE] = {
.max_mirror = 1,
.read_func = mirrored_read,
},
[BTRFS_RAID_RAID0] = {
.max_mirror = 1,
.read_func = simple_stripe_read,
},
[BTRFS_RAID_RAID1] = {
.max_mirror = 2,
.read_func = mirrored_read,
},
[BTRFS_RAID_DUP] = {
.max_mirror = 2,
.read_func = mirrored_read,
},
[BTRFS_RAID_RAID10] = {
.max_mirror = 2,
.read_func = simple_stripe_read,
},
[BTRFS_RAID_RAID5] = {
.max_mirror = 2,
.read_func = raid56_read,
},
[BTRFS_RAID_RAID6] = {
.max_mirror = 3,
.read_func = raid56_read,
},
[BTRFS_RAID_RAID1C3] = {
.max_mirror = 3,
.read_func = mirrored_read,
},
[BTRFS_RAID_RAID1C4] = {
.max_mirror = 4,
.read_func = mirrored_read,
},
};
static LIST_HEAD(global_fs_list);
/* Helper structure for raid56 rebuild */
struct raid56_rebuild_ctrl {
/* Logical bytenr of the full stripe */
u64 full_stripe_start;
u64 chunk_flags;
u16 num_stripes;
u16 data_stripes;
/*
* >=0 to indicate which stripe is corrupted, while -1 means
* not corrupted (e.g. for RAID5, bad_index[1] should always be -1).
*/
int bad_index[2];
/*
* data[0] is the first data stripe of the full stripe.
* data[data_stripes - 1] is the last data stripe of the full stripe.
* data[data_stripes] is the P parity.
* data[data_stripes + 1] is the Q parity (only for RAID6).
*/
void *data[];
};
static size_t raid56_rebuild_ctrl_size(u16 num_stripes)
{
return sizeof(struct raid56_rebuild_ctrl) +
sizeof(char *) * num_stripes;
}
static void free_raid56_rebuild_ctrl(struct raid56_rebuild_ctrl *ctrl)
{
int i;
for (i = 0; i < ctrl->num_stripes; i++)
free(ctrl->data[i]);
free(ctrl);
}
static struct raid56_rebuild_ctrl *alloc_raid56_rebuild_ctrl(u16 num_stripes)
{
struct raid56_rebuild_ctrl *ret;
int i;
ret = calloc(1, raid56_rebuild_ctrl_size(num_stripes));
if (!ret)
return NULL;
ret->num_stripes = num_stripes;
for (i = 0; i < num_stripes; i++) {
ret->data[i] = calloc(1, BTRFS_STRIPE_LEN);
if (!ret->data[i])
goto error;
}
return ret;
error:
free_raid56_rebuild_ctrl(ret);
return NULL;
}
static struct btrfs_device *global_add_device(const char* path, const u8 *fsid,
const u8 *dev_uuid, u64 devid)
{
struct btrfs_fs_devices *fs_devs;
struct btrfs_fs_devices *found_fs_devs = NULL;
struct btrfs_device *dev;
struct btrfs_device *found_dev = NULL;
list_for_each_entry(fs_devs, &global_fs_list, fs_list) {
if (memcmp(fsid, fs_devs->fsid, BTRFS_UUID_SIZE) == 0) {
found_fs_devs = fs_devs;
break;
}
}
/* Allocate a new fs_devs */
if (!found_fs_devs) {
found_fs_devs = malloc(sizeof(*found_fs_devs));
if (!found_fs_devs)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&found_fs_devs->dev_list);
found_fs_devs->num_devices = 0;
memcpy(found_fs_devs->fsid, fsid, BTRFS_UUID_SIZE);
list_add_tail(&found_fs_devs->fs_list, &global_fs_list);
}
list_for_each_entry(dev, &found_fs_devs->dev_list, list) {
/* Conflicts found */
if (dev->devid == devid &&
memcmp(dev_uuid, dev->uuid, BTRFS_UUID_SIZE)) {
error("conflicting device found for devid %llu",
devid);
return ERR_PTR(-EEXIST);
}
if (dev->devid == devid &&
!memcmp(dev_uuid, dev->uuid, BTRFS_UUID_SIZE)) {
found_dev = dev;
break;
}
}
if (!found_dev) {
found_dev = malloc(sizeof(*found_dev));
/*
* Here we can exit directly, for worst case we just added an empty
* btrfs_fs_dev, can be easily cleaned up.
*/
if (!found_dev) {
if (found_fs_devs->num_devices == 0) {
list_del(&found_fs_devs->fs_list);
free(found_fs_devs);
}
return ERR_PTR(-ENOMEM);
}
if (path)
found_dev->path = strndup(path, PATH_MAX);
if (!found_dev->path && path) {
if (found_fs_devs->num_devices == 0) {
list_del(&found_fs_devs->fs_list);
free(found_fs_devs);
}
free(found_dev);
return ERR_PTR(-ENOMEM);
}
found_dev->devid = devid;
memcpy(found_dev->uuid, dev_uuid, BTRFS_UUID_SIZE);
/* fd and fs_info will be set when we mount the fs */
found_dev->fd = -1;
found_dev->fs_info = NULL;
/* Add the new device to corresponding fs_devs */
list_add_tail(&found_dev->list, &found_fs_devs->dev_list);
found_fs_devs->num_devices++;
}
return 0;
}
int btrfs_scan_device(const char *path, struct btrfs_super_block *sb)
{
struct btrfs_super_block buf;
u64 devid;
int ret = 0;
int fd;
fd = open(path, O_RDONLY);
if (fd < 0)
return -errno;
ret = btrfs_read_from_disk(fd, (char *)&buf, BTRFS_SUPER_INFO_OFFSET,
BTRFS_SUPER_INFO_SIZE);
if (ret < BTRFS_SUPER_INFO_SIZE) {
if (ret > 0)
ret = -EIO;
goto out;
}
ret = btrfs_check_super(&buf);
if (ret < 0)
goto out;
devid = btrfs_stack_device_id(&buf.dev_item);
if (IS_ERR(global_add_device(path, buf.fsid, buf.dev_item.uuid, devid)))
goto out;
if (sb)
memcpy(sb, &buf, BTRFS_SUPER_INFO_SIZE);
out:
close(fd);
return ret;
}
struct btrfs_fs_devices *btrfs_open_devices(struct btrfs_fs_info *fs_info)
{
struct btrfs_fs_devices *fs_dev;
struct btrfs_fs_devices *found_fs_dev = NULL;
struct btrfs_device *device;
u8 *fsid = fs_info->fsid;
list_for_each_entry(fs_dev, &global_fs_list, fs_list) {
if (!memcmp(fsid, fs_dev->fsid, BTRFS_UUID_SIZE)) {
found_fs_dev = fs_dev;
break;
}
}
if (!found_fs_dev)
return ERR_PTR(-ENOENT);
list_for_each_entry(device, &found_fs_dev->dev_list, list) {
/* Already opened */
if (device->fd >= 0) {
ASSERT(device->fs_info);
continue;
}
device->fs_info = fs_info;
/* We allow missing devices (aka, degraded by default) */
if (!device->path) {
warning("devid %llu missing", device->devid);
continue;
}
device->fd = open(device->path, O_RDONLY);
if (device->fd < 0)
warning("failed to open devid %llu path %s", device->devid,
device->path);
}
return found_fs_dev;
}
/* Find a device which belongs to the fs specified by @fs_info */
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
const u8 *dev_uuid)
{
struct btrfs_fs_devices *fs_devs = fs_info->fs_devices;
struct btrfs_device *device;
struct btrfs_device *found_dev = NULL;
ASSERT(fs_devs);
list_for_each_entry(device, &fs_devs->dev_list, list) {
if (device->devid == devid &&
!memcmp(dev_uuid, device->uuid, BTRFS_UUID_SIZE)) {
found_dev = device;
break;
}
}
return found_dev;
}
static inline int btrfs_chunk_item_size(int num_stripes)
{
return sizeof(struct btrfs_chunk) +
num_stripes * sizeof(struct btrfs_stripe);
}
/*
* Add a chunk map to @fs_info.
*
* @logical: Logical bytenr of the chunk
* @stack_chunk: The chunk item
* @size_max: The maximum chunk size, this is to co-operate with superblock
* sys_chunk_array which doesn't have item_size to show its size
*/
static int add_chunk_map(struct btrfs_fs_info *fs_info, u64 logical,
struct btrfs_chunk *stack_chunk, int max_size)
{
struct rb_node **p = &fs_info->mapping_root.rb_node;
struct rb_node *parent = NULL;
struct btrfs_chunk_map *map;
u64 length = btrfs_stack_chunk_length(stack_chunk);
int num_stripes;
int i;
/* Sanity check to ensure we don't go beyond @max_size */
if (btrfs_chunk_item_size(1) > max_size) {
error("invalid chunk size, expected max %u has minimal %u",
max_size, btrfs_chunk_item_size(1));
return -EUCLEAN;
}
num_stripes = btrfs_stack_chunk_num_stripes(stack_chunk);
if (btrfs_chunk_item_size(num_stripes) > max_size) {
error("invalid chunk size, expected max %u has minimal %u",
max_size, btrfs_chunk_item_size(num_stripes));
return -EUCLEAN;
}
while (*p) {
parent = *p;
map = rb_entry(parent, struct btrfs_chunk_map, node);
if (logical < map->logical)
p = &(*p)->rb_left;
else if (logical > map->logical)
p = &(*p)->rb_right;
else if (logical == map->logical && length == map->length &&
num_stripes == map->num_stripes)
return 0;
else
return -EEXIST;
}
map = calloc(1, btrfs_chunk_map_size(num_stripes));
if (!map)
return -ENOMEM;
map->length = length;
map->logical = logical;
map->stripe_len = btrfs_stack_chunk_stripe_len(stack_chunk);
map->sub_stripes = btrfs_stack_chunk_sub_stripes(stack_chunk);
map->flags = btrfs_stack_chunk_type(stack_chunk);
map->num_stripes = num_stripes;
for (i = 0; i < num_stripes; i++) {
struct btrfs_device *dev;
u64 devid = btrfs_stack_stripe_devid(&stack_chunk->stripes[i]);
dev = btrfs_find_device(fs_info, devid,
stack_chunk->stripes[i].dev_uuid);
if (!dev) {
warning("devid %llu is missing", devid);
dev = global_add_device(NULL, fs_info->fsid,
stack_chunk->stripes[i].dev_uuid, devid);
if (IS_ERR(dev)) {
free(map);
return PTR_ERR(dev);
}
dev = btrfs_find_device(fs_info, devid,
stack_chunk->stripes[i].dev_uuid);
ASSERT(dev);
}
map->stripes[i].dev = dev;
map->stripes[i].physical =
btrfs_stack_stripe_offset(&stack_chunk->stripes[i]);
}
rb_link_node(&map->node, parent, p);
rb_insert_color(&map->node, &fs_info->mapping_root);
return 0;
}
int btrfs_read_sys_chunk_array(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *sb = &fs_info->super_copy;
u32 sys_chunk_size = btrfs_super_sys_array_size(sb);
int cur = 0;
while (cur < sys_chunk_size) {
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u16 num_stripes;
int ret;
/*
* Make sure we have enough space to contain one disk_key +
* one chunk.
*/
if (sys_chunk_size - cur < sizeof(struct btrfs_disk_key) +
btrfs_chunk_item_size(1)) {
error(
"invalid sys_chunk_size, has %u bytes left expected minimal %zu",
sys_chunk_size - cur,
sizeof(struct btrfs_disk_key) +
btrfs_chunk_item_size(1));
return -EUCLEAN;
}
disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
if (btrfs_disk_key_objectid(disk_key) !=
BTRFS_FIRST_CHUNK_TREE_OBJECTID ||
btrfs_disk_key_type(disk_key) != BTRFS_CHUNK_ITEM_KEY) {
error("invalid disk key found, (%llu %u %llu)",
btrfs_disk_key_objectid(disk_key),
btrfs_disk_key_type(disk_key),
btrfs_disk_key_offset(disk_key));
return -EUCLEAN;
}
chunk = (struct btrfs_chunk *)(disk_key + 1);
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
ret = add_chunk_map(fs_info, btrfs_disk_key_offset(disk_key),
chunk, sys_chunk_size - sizeof(*disk_key) - cur);
if (ret < 0) {
error("failed to add chunk %llu: %d",
btrfs_disk_key_offset(disk_key), ret);
return ret;
}
cur += btrfs_chunk_item_size(num_stripes) + sizeof(*disk_key);
}
return 0;
}
static int read_one_dev(struct btrfs_fs_info *fs_info, struct btrfs_path *path)
{
struct btrfs_dev_item *di;
struct btrfs_device *device;
u8 fsid[BTRFS_UUID_SIZE];
u8 dev_uuid[BTRFS_UUID_SIZE];
u64 devid;
di = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_dev_item);
devid = btrfs_device_id(path->nodes[0], di);
read_extent_buffer(path->nodes[0], dev_uuid,
(unsigned long)btrfs_device_uuid(di), BTRFS_UUID_SIZE);
read_extent_buffer(path->nodes[0], fsid,
(unsigned long)btrfs_device_fsid(di), BTRFS_UUID_SIZE);
device = btrfs_find_device(fs_info, devid, dev_uuid);
if (!device) {
warning("devid %llu is missing", devid);
device = global_add_device(NULL, fsid, dev_uuid, devid);
if (IS_ERR(device))
return PTR_ERR(device);
}
return 0;
}
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_path path = {} ;
struct btrfs_key_range range;
int ret = 0;
range.objectid = BTRFS_DEV_ITEMS_OBJECTID;
range.type_start = range.type_end = BTRFS_DEV_ITEM_KEY;
range.offset_start = 0;
range.offset_end = (u64)-1;
ret = btrfs_search_keys_start(fs_info->chunk_root, &path, &range);
if (ret < 0) {
error("failed to read dev items: %d", ret);
return ret;
}
/* Read all device items */
while (true) {
ret = read_one_dev(fs_info, &path);
if (ret < 0)
goto out;
ret = btrfs_search_keys_next(&path, &range);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
}
btrfs_release_path(&path);
range.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
range.type_start = range.type_end = BTRFS_CHUNK_ITEM_KEY;
range.offset_start = 0;
range.offset_end = (u64)-1;
ret = btrfs_search_keys_start(fs_info->chunk_root, &path, &range);
if (ret < 0) {
error("failed to read chunk items: %d", ret);
return ret;
}
/* Read all chunk items */
while (true) {
struct btrfs_key key;
struct btrfs_chunk *chunk;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
chunk = (struct btrfs_chunk *)(path.nodes[0]->data +
btrfs_item_ptr_offset(path.nodes[0], path.slots[0]));
ret = add_chunk_map(fs_info, key.offset, chunk,
btrfs_item_size_nr(path.nodes[0], path.slots[0]));
if (ret < 0)
goto out;
ret = btrfs_search_keys_next(&path, &range);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
}
out:
btrfs_release_path(&path);
return ret;
}
/* Basic sanity check for reads */
static int check_read(struct btrfs_chunk_map *map, u64 logical, size_t size,
int mirror_nr)
{
enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->flags);
int max_mirror = btrfs_raid_array[index].max_mirror;
if (logical >= map->logical + map->length ||
logical + size <= map->logical) {
error("logical %llu is not in chunk range [%llu, %llu)",
logical, map->logical, map->logical + map->length);
return -EUCLEAN;
}
if (mirror_nr > max_mirror) {
error("bad mirror_nr for logical %llu, has %u wanted %u",
logical, max_mirror, mirror_nr);
return -EUCLEAN;
}
return 0;
}
static int mirrored_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_nr)
{
int ret;
struct btrfs_io_stripe *stripe;
u64 offset = logical - map->logical;
ret = check_read(map, logical, size, mirror_nr);
if (ret < 0)
return ret;
stripe = &map->stripes[mirror_nr - 1];
if (stripe->dev->fd >= 0)
ret = btrfs_read_from_disk(stripe->dev->fd, buf,
stripe->physical + offset, size);
else
ret = -EIO;
return ret;
}
static int simple_stripe_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_nr)
{
struct btrfs_io_stripe *stripe;
int ret;
const u64 offset = logical - map->logical;
const u64 stripe_len = map->stripe_len;
const u16 sub_stripes = map->sub_stripes;
const u16 data_stripes = map->num_stripes / map->sub_stripes;
const u32 full_stripe_len = data_stripes * stripe_len;
u16 index;
u64 len;
ret = check_read(map, logical, size, mirror_nr);
if (ret < 0)
return ret;
/*
* Current btrfs is using fixed stripe len (64K), and we will later
* rely on round_down() which requires the parameter is power of 2.
*/
ASSERT(is_power_of_2(stripe_len));
len = MIN(size, round_down(offset + stripe_len, stripe_len) - offset);
/*
* Calculate the stripe index.
*
* offset / stripe_len get the total stripe number.
* Then % data_stripes gives which stripe group we should be.
*
* For RAID1, at this strage it's what we need already.
* For RAID10, since we still have another copy, we need to multiply by
* sub_stripes, so we can choose the mirror based on mirror_nr.
*/
index = (offset / stripe_len) % data_stripes * sub_stripes;
index += mirror_nr - 1;
stripe = &map->stripes[index];
/* Now do the real IO */
if (stripe->dev->fd >= 0) {
u64 physical = offset / full_stripe_len * stripe_len +
offset % map->stripe_len + stripe->physical;
ret = btrfs_read_from_disk(stripe->dev->fd, buf, physical, len);
} else {
ret = -EIO;
}
return ret;
}
static int raid56_read(struct btrfs_fs_info *fs_info,
struct btrfs_chunk_map *map, char *buf, size_t size,
u64 logical, int mirror_nr)
{
struct raid56_rebuild_ctrl *ctrl;
const u64 offset = logical - map->logical;
const u64 stripe_len = map->stripe_len;
const u16 num_stripes = map->num_stripes;
const u16 data_stripes = (map->flags & BTRFS_BLOCK_GROUP_RAID5) ?
num_stripes - 1 : num_stripes - 2;
const u16 nr_tolerated = (map->flags & BTRFS_BLOCK_GROUP_RAID5) ?
1 : 2;
/* How many full stripes needs to be skipped */
const u32 full_stripe_nr = offset / (data_stripes * stripe_len);
/* Btrfs RAID56 rotate right */
const int rot = full_stripe_nr % num_stripes;
struct btrfs_io_stripe *stripe;
u64 physical;
u32 read_len;
u16 raw_stripe_index;
u16 stripe_index;
u16 nr_failed = 1;
int ret;
int i;
/* min(data stripe end, read range end) - logical */
read_len = MIN(round_down(offset, stripe_len) + stripe_len + map->logical,
logical + size) - logical;
/* First get the index as if there is no rotation */
raw_stripe_index = (offset - full_stripe_nr * (data_stripes * stripe_len)) /
stripe_len;
/* Then add the rotation value */
stripe_index = (raw_stripe_index + rot) % num_stripes;
stripe = &map->stripes[stripe_index];
/* Direct read from data stripes */
if (mirror_nr <= 1 && stripe->dev->fd > 0) {
physical = stripe->physical +
full_stripe_nr * BTRFS_STRIPE_LEN +
offset % BTRFS_STRIPE_LEN;
return btrfs_read_from_disk(stripe->dev->fd, buf, physical,
read_len);
}
/* Has to rebuild the data stripe */
ctrl = alloc_raid56_rebuild_ctrl(num_stripes);
if (!ctrl)
return -ENOMEM;
ctrl->num_stripes = num_stripes;
ctrl->data_stripes = data_stripes;
ctrl->chunk_flags = map->flags;
ctrl->full_stripe_start = full_stripe_nr * data_stripes * stripe_len +
map->logical;
/*
* The rebuild contrl doesn't take rotation into consideration.
* And since we're here, we already tried and failed to read using
* mirror 1, thus the raw_stripe_index must point to the corrupted
* data stripe.
*/
ctrl->bad_index[0] = raw_stripe_index;
/* This will be determined later */
ctrl->bad_index[1] = -1;
/* Now read all stripes */
for (i = 0; i < num_stripes; i++) {
stripe_index = (i + rot) % num_stripes;
stripe = &map->stripes[stripe_index];
physical = stripe->physical + full_stripe_nr * BTRFS_STRIPE_LEN;
if (stripe->dev->fd > 0) {
ret = btrfs_read_from_disk(stripe->dev->fd,
ctrl->data[i], physical,
BTRFS_STRIPE_LEN);
if (ret == BTRFS_STRIPE_LEN)
continue;
/* Read failure falls through */
}
/* Known corrupted position, no need to update the count */
if (stripe_index == (raw_stripe_index + rot) % num_stripes)
continue;
nr_failed++;
if (nr_failed > nr_tolerated)
break;
ctrl->bad_index[nr_failed - 1] = i;
}
if (nr_failed > nr_tolerated) {
error(
"not enough stripes to rebuild full stripe %llu, failed %u tolerance %u",
ctrl->full_stripe_start, nr_failed, nr_tolerated);
ret = -EIO;
goto out;
}
/*
* TODO: We have no way to tell RAID6 how to exhaust all combinations to
* recover data stripes.
* This means, if we have two data stripes corrupted, but no device
* missing, we will just try to rebuild current stripe using parity.
*
* Even btrfs kernel implementation has this problem, it's not really
* any better than dm/md RAID56 recovery.
*
* In theory we can expand mirror_nr for RAID6 to try all combinations.
*/
ret = raid56_recov(num_stripes, BTRFS_STRIPE_LEN, map->flags,
ctrl->bad_index[0], ctrl->bad_index[1],
ctrl->data);
if (ret > 0)
ret = -EIO;
if (ret < 0)
goto out;
/* Finally copy the recovered data back to buffer */
memcpy(buf, ctrl->data[raw_stripe_index] + logical % stripe_len,
read_len);
ret = read_len;
out:
free_raid56_rebuild_ctrl(ctrl);
return ret;
}
static struct btrfs_chunk_map *lookup_chunk_map(struct btrfs_fs_info *fs_info,
u64 logical)
{
struct rb_node *node = fs_info->mapping_root.rb_node;
struct btrfs_chunk_map *entry;
while (node) {
entry = rb_entry(node, struct btrfs_chunk_map, node);
if (logical < entry->logical)
node = node->rb_left;
else if (logical >= entry->logical + entry->length)
node = node->rb_right;
else
return entry;
}
return NULL;
}
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical)
{
struct btrfs_chunk_map *map;
enum btrfs_raid_types index;
map = lookup_chunk_map(fs_info, logical);
if (!map) {
error("can not find chunk for logical %llu", logical);
return -ENOENT;
}
index = btrfs_bg_flags_to_raid_index(map->flags);
return btrfs_raid_array[index].max_mirror;
}
int btrfs_read_logical(struct btrfs_fs_info *fs_info, char *buf, size_t size,
u64 logical, int mirror_nr)
{
struct btrfs_chunk_map *map;
enum btrfs_raid_types index;
int ret;
map = lookup_chunk_map(fs_info, logical);
if (!map) {
error("can not find chunk for logical %llu", logical);
return -ENOENT;
}
index = btrfs_bg_flags_to_raid_index(map->flags);
ret = btrfs_raid_array[index].read_func(fs_info, map, buf, size,
logical, mirror_nr);
return ret;
}
void btrfs_exit(void)
{
struct btrfs_fs_devices *fs_devs;
struct btrfs_fs_devices *tmp_devs;
list_for_each_entry_safe(fs_devs, tmp_devs, &global_fs_list, fs_list) {
struct btrfs_device *dev;
struct btrfs_device *tmp;
list_for_each_entry_safe(dev, tmp, &fs_devs->dev_list, list) {
if (dev->fd > 0) {
char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
uuid_unparse(fs_devs->fsid, fsid_buf);
warning("devid %llu for fsid %s is not closed",
dev->devid, fsid_buf);
close(dev->fd);
dev->fd = -1;
}
free(dev->path);
list_del(&dev->list);
free(dev);
}
list_del(&fs_devs->fs_list);
free(fs_devs);
}
}