-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathSOM.py
71 lines (60 loc) · 2.64 KB
/
SOM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Implementation of the Deep Embedded Self-Organizing Map model
SOM layer
@author Florent Forest
@version 2.0
"""
import tensorflow as tf
from tensorflow.keras.layers import Layer, InputSpec
class SOMLayer(Layer):
"""
Self-Organizing Map layer class with rectangular topology
# Example
```
model.add(SOMLayer(map_size=(10,10)))
```
# Arguments
map_size: Tuple representing the size of the rectangular map. Number of prototypes is map_size[0]*map_size[1].
prototypes: Numpy array with shape `(n_prototypes, latent_dim)` witch represents the initial cluster centers
# Input shape
2D tensor with shape: `(n_samples, latent_dim)`
# Output shape
2D tensor with shape: `(n_samples, n_prototypes)`
"""
def __init__(self, map_size, prototypes=None, **kwargs):
if 'input_shape' not in kwargs and 'latent_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('latent_dim'),)
super(SOMLayer, self).__init__(**kwargs)
self.map_size = map_size
self.n_prototypes = map_size[0]*map_size[1]
self.initial_prototypes = prototypes
self.input_spec = InputSpec(ndim=2)
self.prototypes = None
self.built = False
def build(self, input_shape):
assert(len(input_shape) == 2)
input_dim = input_shape[1]
self.input_spec = InputSpec(dtype=tf.float32, shape=(None, input_dim))
self.prototypes = self.add_weight(shape=(self.n_prototypes, input_dim), initializer='glorot_uniform', name='prototypes')
if self.initial_prototypes is not None:
self.set_weights(self.initial_prototypes)
del self.initial_prototypes
self.built = True
def call(self, inputs, **kwargs):
"""
Calculate pairwise squared euclidean distances between inputs and prototype vectors
Arguments:
inputs: the variable containing data, Tensor with shape `(n_samples, latent_dim)`
Return:
d: distances between inputs and prototypes, Tensor with shape `(n_samples, n_prototypes)`
"""
# Note: (tf.expand_dims(inputs, axis=1) - self.prototypes) has shape (n_samples, n_prototypes, latent_dim)
d = tf.reduce_sum(tf.square(tf.expand_dims(inputs, axis=1) - self.prototypes), axis=2)
return d
def compute_output_shape(self, input_shape):
assert(input_shape and len(input_shape) == 2)
return input_shape[0], self.n_prototypes
def get_config(self):
config = {'map_size': self.map_size}
base_config = super(SOMLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))