forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gold.py
219 lines (185 loc) · 8.14 KB
/
test_gold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding: utf-8
from __future__ import unicode_literals
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
from spacy.gold import spans_from_biluo_tags, GoldParse, iob_to_biluo
from spacy.gold import GoldCorpus, docs_to_json, align
from spacy.lang.en import English
from spacy.tokens import Doc
from .util import make_tempdir
import pytest
import srsly
def test_gold_biluo_U(en_vocab):
words = ["I", "flew", "to", "London", "."]
spaces = [True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to London"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "U-LOC", "O"]
def test_gold_biluo_BL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "."]
spaces = [True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_BIL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
def test_gold_biluo_overlap(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC"),
]
with pytest.raises(ValueError):
biluo_tags_from_offsets(doc, entities)
def test_gold_biluo_misalign(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
spaces = [True, True, True, True, True, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "-", "-", "-"]
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
text = "I flew to Silicon Valley via London."
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
doc = en_tokenizer(text)
biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
assert biluo_tags_converted == biluo_tags
offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
assert offsets_converted == offsets
def test_biluo_spans(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
spans = spans_from_biluo_tags(doc, biluo_tags)
assert len(spans) == 2
assert spans[0].text == "Silicon Valley"
assert spans[0].label_ == "LOC"
assert spans[1].text == "London"
assert spans[1].label_ == "GPE"
def test_gold_ner_missing_tags(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
gold = GoldParse(doc, entities=biluo_tags) # noqa: F841
def test_iob_to_biluo():
good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
converted_biluo = iob_to_biluo(good_iob)
assert good_biluo == converted_biluo
with pytest.raises(ValueError):
iob_to_biluo(bad_iob)
def test_roundtrip_docs_to_json():
text = "I flew to Silicon Valley via London."
tags = ["PRP", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
heads = [1, 1, 1, 4, 2, 1, 5, 1]
deps = ["nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
nlp = English()
doc = nlp(text)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].dep_ = deps[i]
doc[i].head = doc[heads[i]]
doc.ents = spans_from_biluo_tags(doc, biluo_tags)
doc.cats = cats
doc.is_tagged = True
doc.is_parsed = True
# roundtrip to JSON
with make_tempdir() as tmpdir:
json_file = tmpdir / "roundtrip.json"
srsly.write_json(json_file, [docs_to_json(doc)])
goldcorpus = GoldCorpus(str(json_file), str(json_file))
reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
assert len(doc) == goldcorpus.count_train()
assert text == reloaded_doc.text
assert tags == goldparse.tags
assert deps == goldparse.labels
assert heads == goldparse.heads
assert biluo_tags == goldparse.ner
assert "TRAVEL" in goldparse.cats
assert "BAKING" in goldparse.cats
assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
assert cats["BAKING"] == goldparse.cats["BAKING"]
# roundtrip to JSONL train dicts
with make_tempdir() as tmpdir:
jsonl_file = tmpdir / "roundtrip.jsonl"
srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
assert len(doc) == goldcorpus.count_train()
assert text == reloaded_doc.text
assert tags == goldparse.tags
assert deps == goldparse.labels
assert heads == goldparse.heads
assert biluo_tags == goldparse.ner
assert "TRAVEL" in goldparse.cats
assert "BAKING" in goldparse.cats
assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
assert cats["BAKING"] == goldparse.cats["BAKING"]
# roundtrip to JSONL tuples
with make_tempdir() as tmpdir:
jsonl_file = tmpdir / "roundtrip.jsonl"
# write to JSONL train dicts
srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
# load and rewrite as JSONL tuples
srsly.write_jsonl(jsonl_file, goldcorpus.train_tuples)
goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
assert len(doc) == goldcorpus.count_train()
assert text == reloaded_doc.text
assert tags == goldparse.tags
assert deps == goldparse.labels
assert heads == goldparse.heads
assert biluo_tags == goldparse.ner
assert "TRAVEL" in goldparse.cats
assert "BAKING" in goldparse.cats
assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
assert cats["BAKING"] == goldparse.cats["BAKING"]
# xfail while we have backwards-compatible alignment
@pytest.mark.xfail
@pytest.mark.parametrize(
"tokens_a,tokens_b,expected",
[
(["a", "b", "c"], ["ab", "c"], (3, [-1, -1, 1], [-1, 2], {0: 0, 1: 0}, {})),
(
["a", "b", "``", "c"],
['ab"', "c"],
(4, [-1, -1, -1, 1], [-1, 3], {0: 0, 1: 0, 2: 0}, {}),
),
(["a", "bc"], ["ab", "c"], (4, [-1, -1], [-1, -1], {0: 0}, {1: 1})),
(
["ab", "c", "d"],
["a", "b", "cd"],
(6, [-1, -1, -1], [-1, -1, -1], {1: 2, 2: 2}, {0: 0, 1: 0}),
),
(
["a", "b", "cd"],
["a", "b", "c", "d"],
(3, [0, 1, -1], [0, 1, -1, -1], {}, {2: 2, 3: 2}),
),
([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})),
],
)
def test_align(tokens_a, tokens_b, expected):
cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b)
assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected
# check symmetry
cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a)
assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected
def test_goldparse_startswith_space(en_tokenizer):
text = " a"
doc = en_tokenizer(text)
g = GoldParse(doc, words=["a"], entities=["U-DATE"], deps=["ROOT"], heads=[0])
assert g.words == [" ", "a"]
assert g.ner == [None, "U-DATE"]
assert g.labels == [None, "ROOT"]