Skip to content

Latest commit

 

History

History
115 lines (80 loc) · 3.62 KB

README.md

File metadata and controls

115 lines (80 loc) · 3.62 KB

Related Works

  1. TS-RIR: Translated synthetic room impulse responses for speech augmentation (IEEE ASRU 2021)
  2. FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR (ICASSP 2022)
  3. MESH2IR: Neural Acoustic Impulse Response Generator for Complex 3D Scenes (ACM Multimedia 2022)

IR-GAN (INTERSPEECH 2021)

This is the official implementation of IR-GAN. This is the extension of WaveGAN to augment Room Impulse Response (RIR). You can find more details on this project here https://gamma.umd.edu/pro/speech/ir-gan.

Video : https://www.youtube.com/watch?v=_v5rDmDXvD0

Requirements

tensorflow-gpu==1.12.0
scipy==1.0.0
matplotlib==3.0.2
librosa==0.6.2
ffmpeg ==4.2.1
cuda ==9.0.176
cudnn ==7.6.5
Matlab

Datasets

In order to train WaveGAN to map low dimensional latent vectors to high dimensional space where room impulse response is present, use the following recorded RIR from BUT ReverbDB. Unzip RIR directory inside IR-GAN folder.

https://drive.google.com/file/d/1YX1XEpJ2W1cZD4Dn7d5CRBVPOFLUKG4B/view?usp=sharing

You can generate RIR using the following trained models (https://drive.google.com/file/d/1IktFk27UnJx7ycGlOnc71VX7GuFRwR7L/view?usp=sharing). Copy these trained models to RIR_Generation folder.

IR Statistics Toolbox

We need following Matlab toolbox to calculate Room Impulse Response Statistics (https://www.mathworks.com/matlabcentral/fileexchange/42566-impulse-response-acoustic-information-calculator).

Christopher Hummersone (2020). Impulse response acoustic information calculator (https://github.com/IoSR-Surrey/MatlabToolbox), GitHub. Retrieved October 31, 2020.

Train a WaveGAN

You can train WaveGAN to generate RIR using the following command

export CUDA_VISIBLE_DEVICES=0
python3 train_wavegan.py train ./train --data_dir RIR/ --data_first_slice --data_pad_end --data_fast_wav

Generate RIR

Copy the trained models inside train directory or download the trained models() to RIR Generation folder. You can generate constrained RIR using the following command.

python3 Augment_RIR.py

You can edit number of RIRs to be generated inside the file Augment_RIR.py

You can generate intermediate RIRs with given upper and lower limits of Ditrect to reverberant ratio (DRR) using the following command

python3 Vector_Arithmatic.py

you can edit the upper and lower limit inside the file Vector_Arithmatic.py

Attribution

If you use this code in your research, please consider citing

@inproceedings{ratnarajah21_interspeech,
  author={Anton Ratnarajah and Zhenyu Tang and Dinesh Manocha},
  title={{IR-GAN: Room Impulse Response Generator for Far-Field Speech Recognition}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={286--290},
  doi={10.21437/Interspeech.2021-230}
}
@inproceedings{donahue2019wavegan,
  title={Adversarial Audio Synthesis},
  author={Donahue, Chris and McAuley, Julian and Puckette, Miller},
  booktitle={ICLR},
  year={2019}
}

If you use recorded RIR from BUT ReverbDB, please consider citing

@article{DBLP:journals/jstsp/SzokeSMPC19,
  author    = {Igor Sz{\"{o}}ke and
               Miroslav Sk{\'{a}}cel and
               Ladislav Mosner and
               Jakub Paliesek and
               Jan Honza Cernock{\'{y}}},
  title     = {Building and Evaluation of a Real Room Impulse Response Dataset},
  journal   = {{IEEE} J. Sel. Top. Signal Process.},
  volume    = {13},
  number    = {4},
  pages     = {863--876},
  year      = {2019}
}