forked from anton-jeran/IR-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
198 lines (165 loc) · 5.96 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from scipy.io.wavfile import read as wavread
import numpy as np
import tensorflow as tf
import sys
def decode_audio(fp, fs=None, num_channels=1, normalize=False, fast_wav=False):
"""Decodes audio file paths into 32-bit floating point vectors.
Args:
fp: Audio file path.
fs: If specified, resamples decoded audio to this rate.
mono: If true, averages channels to mono.
fast_wav: Assume fp is a standard WAV file (PCM 16-bit or float 32-bit).
Returns:
A np.float32 array containing the audio samples at specified sample rate.
"""
if fast_wav:
# Read with scipy wavread (fast).
_fs, _wav = wavread(fp)
if fs is not None and fs != _fs:
raise NotImplementedError('Scipy cannot resample audio.')
if _wav.dtype == np.int16:
_wav = _wav.astype(np.float32)
_wav /= 32768.
elif _wav.dtype == np.float32:
_wav = np.copy(_wav)
else:
raise NotImplementedError('Scipy cannot process atypical WAV files.')
else:
# Decode with librosa load (slow but supports file formats like mp3).
import librosa
_wav, _fs = librosa.core.load(fp, sr=fs, mono=False)
if _wav.ndim == 2:
_wav = np.swapaxes(_wav, 0, 1)
assert _wav.dtype == np.float32
# At this point, _wav is np.float32 either [nsamps,] or [nsamps, nch].
# We want [nsamps, 1, nch] to mimic 2D shape of spectral feats.
if _wav.ndim == 1:
nsamps = _wav.shape[0]
nch = 1
else:
nsamps, nch = _wav.shape
_wav = np.reshape(_wav, [nsamps, 1, nch])
# Average (mono) or expand (stereo) channels
if nch != num_channels:
if num_channels == 1:
_wav = np.mean(_wav, 2, keepdims=True)
elif nch == 1 and num_channels == 2:
_wav = np.concatenate([_wav, _wav], axis=2)
else:
raise ValueError('Number of audio channels not equal to num specified')
if normalize:
factor = np.max(np.abs(_wav))
if factor > 0:
_wav /= factor
return _wav
def decode_extract_and_batch(
fps,
batch_size,
slice_len,
decode_fs,
decode_num_channels,
decode_normalize=True,
decode_fast_wav=False,
decode_parallel_calls=1,
slice_randomize_offset=False,
slice_first_only=False,
slice_overlap_ratio=0,
slice_pad_end=False,
repeat=False,
shuffle=False,
shuffle_buffer_size=None,
prefetch_size=None,
prefetch_gpu_num=None):
"""Decodes audio file paths into mini-batches of samples.
Args:
fps: List of audio file paths.
batch_size: Number of items in the batch.
slice_len: Length of the sliceuences in samples or feature timesteps.
decode_fs: (Re-)sample rate for decoded audio files.
decode_num_channels: Number of channels for decoded audio files.
decode_normalize: If false, do not normalize audio waveforms.
decode_fast_wav: If true, uses scipy to decode standard wav files.
decode_parallel_calls: Number of parallel decoding threads.
slice_randomize_offset: If true, randomize starting position for slice.
slice_first_only: If true, only use first slice from each audio file.
slice_overlap_ratio: Ratio of overlap between adjacent slices.
slice_pad_end: If true, allows zero-padded examples from the end of each audio file.
repeat: If true (for training), continuously iterate through the dataset.
shuffle: If true (for training), buffer and shuffle the sliceuences.
shuffle_buffer_size: Number of examples to queue up before grabbing a batch.
prefetch_size: Number of examples to prefetch from the queue.
prefetch_gpu_num: If specified, prefetch examples to GPU.
Returns:
A tuple of np.float32 tensors representing audio waveforms.
audio: [batch_size, slice_len, 1, nch]
"""
# Create dataset of filepaths
dataset = tf.data.Dataset.from_tensor_slices(fps)
# Shuffle all filepaths every epoch
if shuffle:
dataset = dataset.shuffle(buffer_size=len(fps))
# Repeat
if repeat:
dataset = dataset.repeat()
def _decode_audio_shaped(fp):
_decode_audio_closure = lambda _fp: decode_audio(
_fp,
fs=decode_fs,
num_channels=decode_num_channels,
normalize=decode_normalize,
fast_wav=decode_fast_wav)
audio = tf.py_func(
_decode_audio_closure,
[fp],
tf.float32,
stateful=False)
audio.set_shape([None, 1, decode_num_channels])
return audio
# Decode audio
dataset = dataset.map(
_decode_audio_shaped,
num_parallel_calls=decode_parallel_calls)
# Parallel
def _slice(audio):
# Calculate hop size
if slice_overlap_ratio < 0:
raise ValueError('Overlap ratio must be greater than 0')
slice_hop = int(round(slice_len * (1. - slice_overlap_ratio)) + 1e-4)
if slice_hop < 1:
raise ValueError('Overlap ratio too high')
# Randomize starting phase:
if slice_randomize_offset:
start = tf.random_uniform([], maxval=slice_len, dtype=tf.int32)
audio = audio[start:]
# Extract sliceuences
audio_slices = tf.contrib.signal.frame(
audio,
slice_len,
slice_hop,
pad_end=slice_pad_end,
pad_value=0,
axis=0)
# Only use first slice if requested
if slice_first_only:
audio_slices = audio_slices[:1]
return audio_slices
def _slice_dataset_wrapper(audio):
audio_slices = _slice(audio)
return tf.data.Dataset.from_tensor_slices(audio_slices)
# Extract parallel sliceuences from both audio and features
dataset = dataset.flat_map(_slice_dataset_wrapper)
# Shuffle examples
if shuffle:
dataset = dataset.shuffle(buffer_size=shuffle_buffer_size)
# Make batches
dataset = dataset.batch(batch_size, drop_remainder=True)
# Prefetch a number of batches
if prefetch_size is not None:
dataset = dataset.prefetch(prefetch_size)
if prefetch_gpu_num is not None and prefetch_gpu_num >= 0:
dataset = dataset.apply(
tf.data.experimental.prefetch_to_device(
'/device:GPU:{}'.format(prefetch_gpu_num)))
# Get tensors
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()