-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling.py
48 lines (41 loc) · 1.48 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = train_datagen.flow_from_directory(
'/Users/seungsukim/Downloads/dataset',
target_size=(150, 150),
batch_size=32,
class_mode='categorical',
subset='training')
validation_generator = train_datagen.flow_from_directory(
'/Users/seungsukim/Downloads/dataset',
target_size=(150, 150),
batch_size=32,
class_mode='categorical',
subset='validation')
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
MaxPooling2D(2, 2),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(5, activation='softmax')
])
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size,
epochs=25)
model.evaluate(validation_generator)
# 모델 저장
model.save('your_model_name.h5')