-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspl_comp.py
executable file
·181 lines (155 loc) · 6.25 KB
/
spl_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
'''
Compare two GENIE spline files with formatting circa 2.8.N.
Usage:
python spl_comp.py spline1.xml spline2.xml (n sig)
The script will look for matching spline entries and then check to see
if the cross sections are identical. Note - it does not do any clever
interpolation, it just checks knot by knot for energy and cross section
equivalence. It is _not_ a check of physics model equivalence. Two splines
with the same physics but a different number of knots will not be identical.
The number of significant figures to include in the spline is an optional
argument.
'''
from __future__ import print_function
import sys
from xml.etree import ElementTree as ET
from math import log10, floor
def round_sig(x, sig=3):
return round(x, sig-int(floor(log10(abs(x))))-1)
def decode_flavor(flavor):
"""
Change the PDG code into a string.
"""
return {
'-16': 'tau_antineutrino',
'-14': 'muon_antineutrino',
'-12': 'electron_antineutrino',
'12': 'electron_neutrino',
'14': 'muon_neutrino',
'16': 'tau_neutrino'
}.get(flavor, 'unknown')
def get_neutrino_description(description):
"""
Take a GENIE description string like:
'genie::ReinSeghalCOHPiPXSec/Default/nu:-14;tgt:1000060120;
proc:Weak[CC],COH;hmult:(p=0,n=0,pi+=0,pi-=1,pi0=0);'
and return:
{'algorithm': 'ReinSeghalCOHPiPXSec',
'flavor': 'muon_antineutrino',
'hmult': '(p=0,n=0,pi+=0,pi-=1,pi0=0)',
'proc': 'Weak[CC],COH',
'tgt': '1000060120'}
"""
components = description.split(';')
alg_flavor = components[0].split('/')
alg = alg_flavor[0].split(':')[-1]
flavor = decode_flavor(alg_flavor[-1].split(':')[-1])
ddict = {'algorithm': alg, 'flavor': flavor}
components = components[1:]
for component in components:
elem = component.split(':')
if len(elem) > 1:
ddict[elem[0]] = elem[1]
return ddict
def process_spline(spline, sig=6):
"""
Transform a spline (object) from an ElementTree retrieval
into a dictionary containing the relevant information.
The number of significant figures to include in the spline
is an optional argument.
"""
knots = spline.findall('./knot')
xsecs = []
for knot in knots:
e = knot.find('./E')
x = knot.find('./xsec')
e = float(e.text)
x = float(x.text)
if x > 0:
x = round_sig(x, sig)
xsecs.append((e, x))
description = get_neutrino_description(spline.get('name'))
return {'description': description, 'xsecs': xsecs}
def xml_to_list_of_dicts(xml_file_name, sig=6):
"""
Take an xml file and return a list of dictionaries, where each dictionary
contains a description and a list of tuples for energy and cross section.
The description key is 'description' and the cross sections key is 'xsecs'.
The number of significant figures to include in the spline
is an optional argument.
"""
xsec_xml = ET.parse(xml_file_name)
splines = xsec_xml.findall('./spline')
neutrino_xsecs = []
for spline in splines:
xsec_dict = process_spline(spline, sig)
neutrino_xsecs.append(xsec_dict)
return neutrino_xsecs
if __name__ == '__main__':
if '-h' in sys.argv or '--help' in sys.argv:
print(__doc__)
sys.exit(1)
if len(sys.argv) < 3:
print(__doc__)
sys.exit(2)
xml_file1 = sys.argv[1]
xml_file2 = sys.argv[2]
nsig = 6
if len(sys.argv) >= 4:
nsig = int(sys.argv[3])
# Create a list of cross-sections, where each cross section is represented
# by a dictionary containing a description and the numerical x-sections.
list_of_dicts1 = xml_to_list_of_dicts(xml_file1, nsig)
list_of_dicts2 = xml_to_list_of_dicts(xml_file2, nsig)
n1 = 0
n2 = 0
n_overlap = 0
# Compare all the dictionries in the first list to those in the second.
for d1 in list_of_dicts1:
n1 += 1
for d2 in list_of_dicts2:
n2 += 1
if d1['description'] == d2['description']:
n_overlap += 1
print("Found matching descriptions for %s", d1['description'])
if d1['xsecs'] == d2['xsecs']:
print(" Cross sections match!")
else:
print(" Cross sections DO NOT match!")
xsecs1 = d1['xsecs']
xsecs2 = d2['xsecs']
if len(xsecs1) == len(xsecs2):
print(" Lengths match.")
ll1 = [list(t) for t in zip(*xsecs1)]
ll2 = [list(t) for t in zip(*xsecs2)]
if ll1[0] == ll2[0]:
print(" Energy knot arrays are equal.")
xs1 = ll1[1]
xs2 = ll2[1]
xsdiff = list()
for i in range(len(xs1)):
diff = xs1[i] - xs2[i]
if xs1[i] != 0:
xsdiff.append(diff / xs1[i] * 100.0)
else:
xsdiff.append('NA')
print(" Percentage differences at energies: ")
diff_tup = zip(ll1[0], xsdiff)
for i in range(len(diff_tup)):
if diff_tup[i][1] == 'NA' or \
diff_tup[i][1] == 0:
continue
else:
print("Energy: {0:8.4f} GeV, "
"XsecDiff {1:4.2f} (%)".format(
diff_tup[i][0], diff_tup[i][1]))
# print(diff_tup)
print("\n")
else:
print(" Energy knot arrays are not equal.")
else:
print(" Lengths do not match.")
print(" Nothing more to say...")
print("Found %d cross sections in file 1, %d cross sections in file 2"
", and %d ovleraps" % (n1, n2, n_overlap))