forked from ICSResearch/CPP-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPP.py
393 lines (331 loc) · 13.7 KB
/
CPP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import sys
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
class LayerNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, self.weight, self.bias, self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MSCA(nn.Module):
def __init__(self, dim, dim2=None, reduction=8):
super().__init__()
self.dim = dim
self.dim2 = dim2 if dim2 != None else self.dim
self.pool_xw = nn.AdaptiveAvgPool2d((1, None))
self.pool_xh = nn.AdaptiveAvgPool2d((None, 1))
self.pool_yw = nn.AdaptiveAvgPool2d((1, None))
self.pool_yh = nn.AdaptiveAvgPool2d((None, 1))
self.q = nn.Sequential(
nn.Conv2d(self.dim2, self.dim2 // reduction, kernel_size=1),
nn.GELU(),
nn.Conv2d(self.dim2 // reduction, self.dim2, kernel_size=1),
nn.Sigmoid(),
)
self.k = nn.Sequential(
nn.Conv2d(self.dim2, self.dim2 // reduction, kernel_size=1),
nn.GELU(),
nn.Conv2d(self.dim2 // reduction, self.dim2, kernel_size=1),
nn.Sigmoid(),
)
self.v = nn.Sequential(
nn.Conv2d(self.dim2, self.dim2, kernel_size=3, padding=1, groups=self.dim2),
nn.GELU(),
nn.Conv2d(self.dim2, self.dim2, kernel_size=1),
)
def forward(self, x, y):
xw = self.pool_xw(x) # b, c, 1, h
xh = self.pool_xh(x) # b, c, w, 1
yw = self.pool_yw(y).reshape(xw.shape) # b, c, 1, h
yh = self.pool_yh(y).reshape(xh.shape) # b, c, w, 1
f1 = torch.matmul(xh, yw)
f1 = self.q(f1) # b, c, h, w
f2 = torch.matmul(yh, xw)
f2 = self.k(f2) # b, c, h, w
xt = self.v(x)
xt = xt * f1 * f2
return xt
class MSTB(nn.Module):
def __init__(self, reduction, dim, dim2=None):
super().__init__()
self.cat = MSCA(dim=dim, dim2=dim2, reduction=reduction)
dim3 = dim2 if dim2 != None else dim
self.ln1 = LayerNorm(dim3, eps=1e-6, data_format="channels_first")
self.ln3 = LayerNorm(dim, eps=1e-6, data_format="channels_first")
self.ff = nn.Sequential(
DCAB(dim3, reduction),
)
self.ln2 = LayerNorm(dim3, eps=1e-6, data_format="channels_first")
def forward(self, x, y):
x = self.ln1(x)
y = self.ln3(y)
x = self.cat(x, y) + x
x = self.ln2(x)
x = self.ff(x)
return x
class CA(nn.Module):
def __init__(self, channel, reduction):
super(CA, self).__init__()
self.conv = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channel, channel // reduction, kernel_size=1, bias=False),
nn.GELU(),
nn.Conv2d(channel // reduction, channel, kernel_size=1, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
y = self.conv(x)
return x * y
class DCAB(nn.Module):
def __init__(self, dim, reduction):
super().__init__()
self.block = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim),
LayerNorm(dim, eps=1e-6, data_format="channels_first"),
nn.Conv2d(dim, 4 * dim, kernel_size=1, padding=0),
nn.GELU(),
nn.Conv2d(4 * dim, dim, kernel_size=1, padding=0),
CA(dim, reduction),
)
def forward(self, x):
x = self.block(x) + x
return x
class IterationModule(nn.Module):
def __init__(self, block_size, ratio, dim, reduction):
super(IterationModule, self).__init__()
self.block_size = block_size
self.delta = nn.Parameter(torch.tensor(1e-3), requires_grad=True)
self.step = nn.Parameter(torch.zeros(1, dim, 1, 1) + 1e-3, requires_grad=True)
self.lamda = nn.Parameter(torch.zeros(1, dim, 1, 1) + 1e-0, requires_grad=True)
self.pre1 = nn.Sequential(
nn.Conv2d(1, dim, kernel_size=1, padding=0),
nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim),
)
self.pre2 = nn.Sequential(
nn.Conv2d(1, dim, kernel_size=1, padding=0),
nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim),
)
self.down1 = nn.Sequential(
DCAB(dim, reduction),
nn.Conv2d(dim, 2 * dim, kernel_size=2, stride=2),
LayerNorm(2 * dim, eps=1e-6, data_format="channels_first"),
)
self.down2 = nn.Sequential(
DCAB(2 * dim, reduction),
nn.Conv2d(2 * dim, 4 * dim, kernel_size=2, stride=2),
LayerNorm(4 * dim, eps=1e-6, data_format="channels_first"),
)
self.down3 = nn.Sequential(
DCAB(4 * dim, reduction),
nn.Conv2d(4 * dim, 8 * dim, kernel_size=2, stride=2),
LayerNorm(8 * dim, eps=1e-6, data_format="channels_first"),
)
self.mid = nn.Sequential(
DCAB(8 * dim, reduction),
)
self.up1 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=8 * dim, out_channels=4 * dim, kernel_size=2, stride=2
),
LayerNorm(4 * dim, eps=1e-6, data_format="channels_first"),
DCAB(4 * dim, reduction),
)
self.up2 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=4 * dim, out_channels=2 * dim, kernel_size=2, stride=2
),
LayerNorm(2 * dim, eps=1e-6, data_format="channels_first"),
DCAB(2 * dim, reduction),
)
self.up3 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=2 * dim, out_channels=dim, kernel_size=2, stride=2
),
LayerNorm(dim, eps=1e-6, data_format="channels_first"),
DCAB(dim, reduction),
)
self.unitc4 = MSTB(dim=8 * dim, dim2=dim, reduction=reduction)
self.unitc5 = MSTB(dim=4 * dim, dim2=dim, reduction=reduction)
self.unitc6 = MSTB(dim=2 * dim, dim2=dim, reduction=reduction)
self.post1 = nn.Sequential(
DCAB(3 * dim, reduction),
nn.Conv2d(3 * dim, dim, kernel_size=1, padding=0),
DCAB(dim, reduction),
)
self.post2 = nn.Sequential(
DCAB(dim, reduction),
nn.Conv2d(dim, 1, kernel_size=1, padding=0),
)
self.aap = nn.AdaptiveAvgPool2d(1)
self.thresh = nn.Sequential(
nn.Conv2d(dim, dim // reduction, kernel_size=1, padding=0),
nn.GELU(),
nn.Conv2d(dim // reduction, dim, kernel_size=1, padding=0),
nn.Sigmoid(),
)
self.i = 0
def stres(self, x, mu):
x_a = self.aap(x) * mu
thr = self.thresh(x_a) * x_a
z = torch.zeros_like(x)
x = torch.sign(x) * torch.maximum(torch.abs(x) - thr, z) + x
return x
def forward(self, A, xk, yk, b, x1, x2, x3, x0, i):
############################## xk ##############################
xp = xk
############################# DPFB #############################
xk = self.pre1(xk)
Aty = F.conv_transpose2d(yk, A, stride=self.block_size)
Aty = self.pre2(Aty)
xk = xk - self.step * Aty
xk1 = self.down1(xk) + x1
xk2 = self.down2(xk1) + x2
xk3 = self.down3(xk2) + x3
xk = self.stres(xk, self.step * self.lamda)
xk4 = self.mid(xk3)
xk_t = self.unitc4(xk, xk4)
xk5 = self.up1(xk4) + xk2
xk_t = self.unitc5(xk_t, xk5)
xk6 = self.up2(xk5) + xk1
xk_t = self.unitc6(xk_t, xk6)
xk7 = self.up3(xk6) + xk
xks = torch.cat([x0, xk_t, xk7], dim=1)
x0 = self.post1(xks)
xk = self.post2(x0)
############################## vk ##############################
xkd = xk - xp + xk
############################## yk ##############################
Axd = F.conv2d(xkd, A, stride=self.block_size, padding=0, bias=None)
yk = (yk + self.delta * (Axd - b)) / (1 + self.delta)
return xk, yk, xk6, xk5, xk4, x0
class CPP(torch.nn.Module):
def __init__(self, ratio, block_size=32, dim=32, depth=8, reduction=8):
super(CPP, self).__init__()
self.ratio = ratio
self.depth = depth
self.block_size = block_size
A = torch.from_numpy(self.load_sampling_matrix()).float()
self.A = nn.Parameter(
Rearrange("m (1 b1 b2) -> m 1 b1 b2", b1=self.block_size)(A),
requires_grad=True,
)
self.pre = nn.Sequential(
nn.Conv2d(1, dim, kernel_size=1, padding=0),
DCAB(dim, reduction),
)
self.down1 = nn.Sequential(
nn.Conv2d(dim, dim * 2, kernel_size=2, stride=2),
LayerNorm(2 * dim, eps=1e-6, data_format="channels_first"),
)
self.down2 = nn.Sequential(
DCAB(2 * dim, reduction),
nn.Conv2d(2 * dim, dim * 4, kernel_size=2, stride=2),
LayerNorm(4 * dim, eps=1e-6, data_format="channels_first"),
)
self.down3 = nn.Sequential(
DCAB(4 * dim, reduction),
nn.Conv2d(4 * dim, dim * 8, kernel_size=2, stride=2),
LayerNorm(8 * dim, eps=1e-6, data_format="channels_first"),
)
self.iters = nn.ModuleList()
for _ in range(self.depth):
self.iters.append(IterationModule(self.block_size, ratio, dim, reduction))
out_dim = (self.depth + 1) * (dim + 1)
self.post = nn.Sequential(
DCAB(out_dim, reduction),
nn.Conv2d(out_dim, dim, kernel_size=1),
DCAB(dim, reduction),
nn.Conv2d(dim, 1, kernel_size=1),
)
self.apply(self._init_weights)
def forward(self, x):
# Sampling
b = F.conv2d(x, self.A, stride=self.block_size, padding=0, bias=None)
# Init
x_init = F.conv_transpose2d(b, self.A, stride=self.block_size)
xk = x_init
Ax = F.conv2d(x_init, self.A, stride=self.block_size, padding=0, bias=None)
yk = Ax - b
x0 = self.pre(xk)
x1 = self.down1(x0)
x2 = self.down2(x1)
x3 = self.down3(x2)
# Recon
xks = []
xks.append(xk)
xks.append(x0)
for i in range(self.depth):
xk, yk, x1, x2, x3, x0 = self.iters[i](self.A, xk, yk, b, x1, x2, x3, x0, i)
xks.append(xk)
xks.append(x0)
xk = torch.cat(xks, dim=1)
xk = self.post(xk)
return xk
def load_sampling_matrix(self):
path = "./data/sampling_matrix"
data = np.load(f"{path}/{self.ratio}_{self.block_size}.npy")
return data
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear, nn.ConvTranspose2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def load_pretrained_model(ratio, model_name):
path = f"./model/checkpoint-{model_name}-{ratio}-best.pth"
checkpoint = torch.load(path, map_location="cpu")
return checkpoint
@register_model
def cpp9(ratio, pretrained=False, **kwargs):
model = CPP(ratio, block_size=32, dim=32, depth=9, reduction=8)
if pretrained:
checkpoint = load_pretrained_model(ratio, sys._getframe().f_code.co_name)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def cpp8(ratio, pretrained=False, **kwargs):
model = CPP(ratio, block_size=32, dim=32, depth=8, reduction=8)
if pretrained:
checkpoint = load_pretrained_model(ratio, sys._getframe().f_code.co_name)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def cpp7(ratio, pretrained=False, **kwargs):
model = CPP(ratio, block_size=32, dim=32, depth=7, reduction=8)
if pretrained:
checkpoint = load_pretrained_model(ratio, sys._getframe().f_code.co_name)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def cpp5(ratio, pretrained=False, **kwargs):
model = CPP(ratio, block_size=32, dim=32, depth=5, reduction=8)
if pretrained:
checkpoint = load_pretrained_model(ratio, sys._getframe().f_code.co_name)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def cpp3(ratio, pretrained=False, **kwargs):
model = CPP(ratio, block_size=32, dim=32, depth=3, reduction=8)
if pretrained:
checkpoint = load_pretrained_model(ratio, sys._getframe().f_code.co_name)
model.load_state_dict(checkpoint["model"])
return model