-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils_img.py
152 lines (134 loc) · 5.1 KB
/
utils_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# pyright: reportMissingModuleSource=false
import numpy as np
from augly.image import functional as aug_functional
import torch
from torchvision import transforms
from torchvision.transforms import functional
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
default_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
normalize_vqgan = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize (x - 0.5) / 0.5
unnormalize_vqgan = transforms.Normalize(mean=[-1, -1, -1], std=[1/0.5, 1/0.5, 1/0.5]) # Unnormalize (x * 0.5) + 0.5
normalize_img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize (x - mean) / std
unnormalize_img = transforms.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]) # Unnormalize (x * std) + mean
def psnr(x, y, img_space='vqgan'):
"""
Return PSNR
Args:
x: Image tensor with values approx. between [-1,1]
y: Image tensor with values approx. between [-1,1], ex: original image
"""
if img_space == 'vqgan':
delta = torch.clamp(unnormalize_vqgan(x), 0, 1) - torch.clamp(unnormalize_vqgan(y), 0, 1)
elif img_space == 'img':
delta = torch.clamp(unnormalize_img(x), 0, 1) - torch.clamp(unnormalize_img(y), 0, 1)
else:
delta = x - y
delta = 255 * delta
delta = delta.reshape(-1, x.shape[-3], x.shape[-2], x.shape[-1]) # BxCxHxW
psnr = 20*np.log10(255) - 10*torch.log10(torch.mean(delta**2, dim=(1,2,3))) # B
return psnr
def center_crop(x, scale):
""" Perform center crop such that the target area of the crop is at a given scale
Args:
x: PIL image
scale: target area scale
"""
scale = np.sqrt(scale)
new_edges_size = [int(s*scale) for s in x.shape[-2:]][::-1]
return functional.center_crop(x, new_edges_size)
def resize(x, scale):
""" Perform center crop such that the target area of the crop is at a given scale
Args:
x: PIL image
scale: target area scale
"""
scale = np.sqrt(scale)
new_edges_size = [int(s*scale) for s in x.shape[-2:]][::-1]
return functional.resize(x, new_edges_size)
def rotate(x, angle):
""" Rotate image by angle
Args:
x: image (PIl or tensor)
angle: angle in degrees
"""
return functional.rotate(x, angle)
def adjust_brightness(x, brightness_factor):
""" Adjust brightness of an image
Args:
x: PIL image
brightness_factor: brightness factor
"""
return normalize_img(functional.adjust_brightness(unnormalize_img(x), brightness_factor))
def adjust_contrast(x, contrast_factor):
""" Adjust contrast of an image
Args:
x: PIL image
contrast_factor: contrast factor
"""
return normalize_img(functional.adjust_contrast(unnormalize_img(x), contrast_factor))
def adjust_saturation(x, saturation_factor):
""" Adjust saturation of an image
Args:
x: PIL image
saturation_factor: saturation factor
"""
return normalize_img(functional.adjust_saturation(unnormalize_img(x), saturation_factor))
def adjust_hue(x, hue_factor):
""" Adjust hue of an image
Args:
x: PIL image
hue_factor: hue factor
"""
return normalize_img(functional.adjust_hue(unnormalize_img(x), hue_factor))
def adjust_gamma(x, gamma, gain=1):
""" Adjust gamma of an image
Args:
x: PIL image
gamma: gamma factor
gain: gain factor
"""
return normalize_img(functional.adjust_gamma(unnormalize_img(x), gamma, gain))
def adjust_sharpness(x, sharpness_factor):
""" Adjust sharpness of an image
Args:
x: PIL image
sharpness_factor: sharpness factor
"""
return normalize_img(functional.adjust_sharpness(unnormalize_img(x), sharpness_factor))
def overlay_text(x, text='Lorem Ipsum'):
""" Overlay text on image
Args:
x: PIL image
text: text to overlay
font_path: path to font
font_size: font size
color: text color
position: text position
"""
to_pil = transforms.ToPILImage()
to_tensor = transforms.ToTensor()
img_aug = torch.zeros_like(x, device=x.device)
for ii,img in enumerate(x):
pil_img = to_pil(unnormalize_img(img))
img_aug[ii] = to_tensor(aug_functional.overlay_text(pil_img, text=text))
return normalize_img(img_aug)
def jpeg_compress(x, quality_factor):
""" Apply jpeg compression to image
Args:
x: PIL image
quality_factor: quality factor
"""
to_pil = transforms.ToPILImage()
to_tensor = transforms.ToTensor()
img_aug = torch.zeros_like(x, device=x.device)
for ii,img in enumerate(x):
pil_img = to_pil(unnormalize_img(img))
img_aug[ii] = to_tensor(aug_functional.encoding_quality(pil_img, quality=quality_factor))
return normalize_img(img_aug)