Skip to content

Latest commit

 

History

History
219 lines (180 loc) · 12 KB

File metadata and controls

219 lines (180 loc) · 12 KB

Self-Supervised Vision Transformers with DINO

This repository provides scripts to train and evaluate self-supervised Vision Transformer with DINOand is tested and maintained by Intel® Gaudi®. Before you get started, make sure to review the Supported Configurations. For more information on training and inference of deep learning models using Intel Gaudi AI accelerator, refer to developer.habana.ai. To obtain model performance data, refer to the Intel Gaudi Model Performance Data page.

Table of Contents

Model Overview

This is a PyTorch implementation for DINO. The model is based on code from facebookresearch/dino repository.

For further details, refer to:

Setup

Please follow the instructions provided in the Gaudi Installation Guide to set up the environment including the $PYTHON environment variable. To achieve the best performance, please follow the methods outlined in the Optimizing Training Platform Guide. The guides will walk you through the process of setting up your system to run the model on Gaudi.

Clone Intel Gaudi Model-References

In the docker container, clone this repository and switch to the branch that matches your Intel Gaudi software version. You can run the hl-smi utility to determine the Intel Gaudi software version.

git clone -b [Intel Gaudi software version] https://github.com/HabanaAI/Model-References

Install Model Requirements

  1. In the docker container, go to the model directory:
cd Model-References/PyTorch/computer_vision/classification/dino
  1. Install the required packages using pip.
$PYTHON -m pip install -r requirements.txt

Dataset Preparation

Download and extract ImageNet2012 dataset.

NOTE: It is assumed that the above ImageNet dataset is downloaded and available at path /data/pytorch/imagenet/ILSVRC2012/.

Evaluation Datasets

Different evaluation modes require different datasets as described in the following table:

Mode Dataset How to get Example Location
Video Segmentation DAVIS 2017 git clone https://github.com/davisvideochallenge/davis-2017
cd davis-2017
./data/get_davis.sh
/data/pytorch/davis-2017/
Image Retrieval Oxford & Paris revisited git clone https://github.com/filipradenovic/revisitop /data/pytorch/revisitop/roxford5k/
/data/pytorch/revisitop/rparis6k/
Copy Detection copydays wget https://dl.fbaipublicfiles.com/vissl/datasets/copydays_original.tar.gz && tar xvf copydays_original.tar.gz
wget https://dl.fbaipublicfiles.com/vissl/datasets/copydays_strong.tar.gz && tar xvf copydays_strong.tar.gz
/data/pytorch/copydays/

Training Examples

NOTE:

  • In following commands, data_path should point to train subdirectory of imagenet.
  • Running the model with BF16 precision improves the training time and memory requirements, but may affect accuracy results.

Single-card Training Examples

  • Run self-supervised DINO training with vit_small backbone, FP32 precision and batch size 32 on a single card:
$PYTHON main_dino.py --arch vit_small --data_path /data/pytorch/imagenet/ILSVRC2012/train --output_dir ./dino_vit_small/
  • Run self-supervised DINO training with vit_small backbone, BF16 precision and batch size 64 on a single card:
$PYTHON main_dino.py --arch vit_small --data_path /data/pytorch/imagenet/ILSVRC2012/train --output_dir ./dino_vit_small/ --autocast --batch_size_per_device 64

Multi-card Training Examples

  • Run self-supervised DINO training with vit_small backbone, FP32 precision and batch size 32 on 8 cards:
$PYTHON -m torch.distributed.launch --nproc_per_node=8 main_dino.py --arch vit_small --data_path /data/pytorch/imagenet/ILSVRC2012/train --output_dir ./dino_vit_small/
  • Run self-supervised DINO training with vit_small backbone, BF16 precision and batch size 64 on 8 cards:
$PYTHON -m torch.distributed.launch --nproc_per_node=8 main_dino.py --arch vit_small --data_path /data/pytorch/imagenet/ILSVRC2012/train --output_dir ./dino_vit_small/ --autocast --batch_size_per_device 64

Evaluation

Once self-supervised training is completed, you can run one of the available evaluation methods.

NOTE:

  • It is assumed that the weights from self-supervised training are located in ./dino_vit_small/checkpoint.pth.
  • In following commands, data_path should point to train subdirectory of imagenet.

KNN

Single-card KNN Examples

To run KNN-evaluation on a single card, execute the following command:

$PYTHON eval_knn.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/imagenet/ILSVRC2012/

NOTE: In following commands, data_path should point to train subdirectory of imagenet.

Multi-card KNN Examples

To run KNN-evaluation on 8 cards, execute the following command:

$PYTHON -m torch.distributed.launch --nproc_per_node=8 eval_knn.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/imagenet/ILSVRC2012

Linear

Single-card Linear Examples

To run linear evaluation on a single card, execute the following command:

$PYTHON eval_linear.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/imagenet/ILSVRC2012 --output_dir ./dino_vit_small_eval_linear/

Multi-card Linear Examples

To run linear evaluation on 8 cards, execute the following command:

$PYTHON -m torch.distributed.launch --nproc_per_node=8 eval_linear.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/imagenet/ILSVRC2012 --output_dir ./dino_vit_small_eval_linear/

Copy Detection

Single-card Copy Detection Examples

To run copy detection on a single card, execute the following command:

$PYTHON eval_copy_detection.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/copydays

Multi-card Copy Detection Examples

To run copy detection on 8 cards:

$PYTHON -m torch.distributed.launch --nproc_per_node=8 eval_copy_detection.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/copydays

Image Retrieval

Single-card Image Retrieval Examples

To run image retrieval on a single card, execute the following command:

$PYTHON eval_image_retrieval.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/revisitop --dataset roxford5k
$PYTHON eval_image_retrieval.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/revisitop --dataset rparis6k

Multi-card Image Retrieval Examples

To run image retrieval on 8 cards, execute the following command:

$PYTHON -m torch.distributed.launch --nproc_per_node=8 eval_image_retrieval.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/revisitop --dataset roxford5k
$PYTHON -m torch.distributed.launch --nproc_per_node=8 eval_image_retrieval.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/revisitop --dataset rparis6k

Video Segmentation

To run video segmentation, execute the following command:

$PYTHON eval_video_segmentation.py --pretrained_weights ./dino_vit_small/checkpoint.pth --data_path /data/pytorch/davis-2017

Other Tasks

Visualizing Attention

To visualize attention, execute the following command:

$PYTHON visualize_attention.py --pretrained_weights ./dino_vit_small/checkpoint.pth --image_path PATH_TO_SOURCE_IMAGE

Video Generation

To generate video with visualized attention, execute the following command:

$PYTHON video_generation.py --pretrained_weights ./dino_vit_small/checkpoint.pth --input_path PATH_TO_SOURCE_VIDEO

Advanced

Each training/evaluation command can be run with --help flag to list all available parameters and their descriptions. For example:

$PYTHON main_dino.py --help
$PYTHON eval_knn.py --help
$PYTHON eval_linear.py --help
$PYTHON eval_image_retrieval.py --help
$PYTHON eval_video_segmentation.py --help
$PYTHON eval_copy_detection.py --help
$PYTHON visualize_attention.py --help
$PYTHON video_generation.py --help

Supported Configurations

Validated on Intel Gaudi Software Version PyTorch Version Mode
Gaudi 1.16.2 2.2.2 Training

Changelog

1.5.0

  • Initial release.

1.6.0

  • Enabled additional tasks (eval_copy_detection, eval_video_segmentation, eval_image_retrieval, visualize_attention, video_generation).
  • Removed workaround for index_copy_.
  • Removed workaround for bicubic interpolation mode.
  • Fixed OOM for batch_size=64 on FP32.

1.9.0

  • Added support for autocast on Gaudi.

1.11.0

  • Dynamic Shapes will be enabled by default in future releases. It is currently enabled in the training script as a temporary solution.

1.12.0

  • Removed support for HMP.

Script Modifications

Major changes done to original model from facebookresearch/dino repository:

  • Modified some scripts to run the model on Gaudi:
    • Loaded Intel Gaudi PyTorch module.
    • Changed tensors device assignment from cuda to hpu.
  • Applied temporary workarounds scripts to enable the model on HPU:
    • Changed the default batch_size_per_device to 32 for self-supervised part.
    • Avoided execution of torch.cat operator with empty tensors.
    • Moved dino_loss to cpu device at the time of checkpoint saving due to a bug in PyTorch framework: pytorch/pytorch#77533.
    • Increased the number of chunks in knn_classifier from 100 to 200.
    • Moved argsort to cpu.
  • Improved performance of the model by limiting synchronization between CPU and the device within gradient clipping implementation.
  • Additional functionalities like TensorBoard, throughput logging and limiting dataset size have been added.