This repository has been archived by the owner on Oct 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathaosring.py
84 lines (61 loc) · 2.4 KB
/
aosring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from __future__ import print_function
from .curve import *
from .schnorr import *
from .utils import *
"""
This implements AOS 1-out-of-n ring signature which require only `n+1`
scalars to validate in addition to the `n` public keys.
''Intuitively, this scheme is a ring of Schnorr signatures where each
challenge is taken from the previous step. Indeed, it is the Schnorr
signature scheme where n=1''
For more information, see:
- https://www.iacr.org/cryptodb/archive/2002/ASIACRYPT/50/50.pdf
When verifying the ring only the initial seed value for `c` is provided
instead of supplying a value of `c` for each link in the ring. The hash
of the previous link is used as the next value of `c`.
The ring is successfully verified if the last value of `c` matches the
seed value.
For more information on turning this scheme into a linkable ring:
- https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
- https://eprint.iacr.org/2004/027.pdf
"""
def aosring_randkeys(n=4):
skeys = [randsn() for _ in range(0, n)]
pkeys = [sbmul(sk) for sk in skeys]
i = randint(0, n-1)
return pkeys, (pkeys[i], skeys[i])
def aosring_sign(pkeys, mypair, tees=None, alpha=None, message=None):
assert len(pkeys) > 0
message = message or hashpn(*pkeys)
mypk, mysk = mypair
myidx = pkeys.index(mypk)
tees = tees or [randsn() for _ in range(0, len(pkeys))]
cees = [0 for _ in range(0, len(pkeys))]
alpha = alpha or randsn()
i = myidx
n = 0
while n < len(pkeys):
idx = i % len(pkeys)
c = alpha if n == 0 else cees[idx-1]
cees[idx] = schnorr_calc(pkeys[idx], tees[idx], c, message)
n += 1
i += 1
# Then close the ring, which proves we know the secret for one ring item
# TODO: split into schnorr_alter
alpha_gap = submodn(alpha, cees[myidx-1])
tees[myidx] = addmodn(tees[myidx], mulmodn(mysk, alpha_gap))
return pkeys, tees, cees[-1]
def aosring_check(pkeys, tees, seed, message=None):
assert len(pkeys) > 0
assert len(tees) == len(pkeys)
message = message or hashpn(*pkeys)
c = seed
for i, pkey in enumerate(pkeys):
c = schnorr_calc(pkey, tees[i], c, message)
return c == seed
if __name__ == "__main__":
msg = randsn()
keys = aosring_randkeys(4)
print(aosring_check(*aosring_sign(*keys, message=msg), message=msg))
proof = aosring_sign(*keys, message=msg)
print(quotelist([item.n for sublist in proof[0] for item in sublist]) + ',' + quotelist(proof[1]) + ',' + quote(proof[2]) + ',' + quote(msg))