-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathStrassens_Algo_for_Matrix_multiplication.java
253 lines (189 loc) · 7.11 KB
/
Strassens_Algo_for_Matrix_multiplication.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
Strassen's Algorithm is an algorithm for Matrix multiplication.
It is faster(optimal) than the standard matrix multiplication algorithm and
is useful in practice for large matrices. It uses the Divide N Conquer Approach
and recursively divides a Matrix into four small matrices.
*/
import java.util.Scanner;
public class Strassens_Algo_for_Matrix_multiplication {
// Function to multiply matrices
// A and B are the two matrices to be multiplied
public int[][] multiply(int[][] A, int[][] B) {
// Order of matrix
int n = A.length;
// Creating a 2D square matrix with size n
int[][] output = new int[n][n];
// Base case
// If there is only single element in the two matrices
if (n == 1)
// Returnng the simple multiplication of
// two elements in matrices
output[0][0] = A[0][0] * B[0][0];
else {
// Dividing the two Matrices into parts
// by storing sub-parts to variables
/*
* A = [A11 A12 A21 A22]
*
* B = [B11 B12 B21 B22]
*/
int[][] A11 = new int[n / 2][n / 2];
int[][] A12 = new int[n / 2][n / 2];
int[][] A21 = new int[n / 2][n / 2];
int[][] A22 = new int[n / 2][n / 2];
int[][] B11 = new int[n / 2][n / 2];
int[][] B12 = new int[n / 2][n / 2];
int[][] B21 = new int[n / 2][n / 2];
int[][] B22 = new int[n / 2][n / 2];
// Dividing matrix A into 4 halves i.e A11, A12, A21, A22
split(A, A11, 0, 0);
split(A, A12, 0, n / 2);
split(A, A21, n / 2, 0);
split(A, A22, n / 2, n / 2);
// Dividing matrix B into 4 halves i.e B11, B12, B21, B22
split(B, B11, 0, 0);
split(B, B12, 0, n / 2);
split(B, B21, n / 2, 0);
split(B, B22, n / 2, n / 2);
// Using Formulas as described in the algorithm
// You can check it out on https://en.wikipedia.org/wiki/Strassen_algorithm
// Calculating M1, M2, M3, M4, M5, M6, M7 by recursively calling multiply()
// M1:=(A11+A22)×(B11+B22)
int[][] M1 = multiply(add(A11, A22), add(B11, B22));
// M2:=(A21+A22)×B11
int[][] M2 = multiply(add(A21, A22), B11);
// M3:=A11x(B12-B22)
int[][] M3 = multiply(A11, sub(B12, B22));
// M4:=A22×(B21−B11)
int[][] M4 = multiply(A22, sub(B21, B11));
// M5:=(A11+A12)×(B22)
int[][] M5 = multiply(add(A11, A12), B22);
// M6:=(A21-A11)×(B11+B12)
int[][] M6 = multiply(sub(A21, A11), add(B11, B12));
// M7:=(A12-A22)×(B21+B22)
int[][] M7 = multiply(sub(A12, A22), add(B21, B22));
// Output Matrix after multiplication:-
/*
* output = [C11 C12 C21 C22]
*/
// C11:=M1+M4−M5+M7
int[][] C11 = add(sub(add(M1, M4), M5), M7);
// C12:=M3+M5
int[][] C12 = add(M3, M5);
// C21:=M2+M4
int[][] C21 = add(M2, M4);
// C22:=M1−M2+M3+M6
int[][] C22 = add(sub(add(M1, M3), M2), M6);
// Join 4 halves into one result matrix
join(C11, output, 0, 0);
join(C12, output, 0, n / 2);
join(C21, output, n / 2, 0);
join(C22, output, n / 2, n / 2);
}
// Step 4: Return result
return output;
}
// Funtion to substract two matrices
public int[][] sub(int[][] A, int[][] B) {
int n = A.length;
// Resultant Matrix
int[][] C = new int[n][n];
// Outer loop for rows
for (int i = 0; i < n; i++)
// Inner loop for columns
for (int j = 0; j < n; j++)
// Substracting corresponding elements
// from matrices
C[i][j] = A[i][j] - B[i][j];
return C;
}
// Funtion to add two matrices
public int[][] add(int[][] A, int[][] B) {
int n = A.length;
// Resultant matrix
int[][] C = new int[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
// Adding corresponding elements
// of matrices
C[i][j] = A[i][j] + B[i][j];
return C;
}
// Funtion to split the parent matrix
// into child matrices
public void split(int[][] P, int[][] C, int iP, int jP) {
// iP and jP are starting indexes to split the Parent Matrix
// Outer loop for rows
for (int i1 = 0, i2 = iP; i1 < C.length; i1++, i2++)
// i1 and j1 used to traverse child matrix
// i2 and j2 used to traverse Parent matrix
// Inner loop for columns
for (int j1 = 0, j2 = jP; j1 < C.length; j1++, j2++)
C[i1][j1] = P[i2][j2];
}
// Funtion to join child matrices
// into the Parent matrix
// iP and jP are starting indexes to join into the Parent Matrix
public void join(int[][] C, int[][] P, int iP, int jP)
{
// Outer loop for rows
for (int i1 = 0, i2 = iP; i1 < C.length; i1++, i2++)
// Inner loop for columns
for (int j1 = 0, j2 = jP; j1 < C.length; j1++, j2++)
P[i2][j2] = C[i1][j1];
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Strassen Multiplication Algorithm Implementation For Matrix Multipication :\n");
Strassens_Algo_for_Matrix_multiplication s = new Strassens_Algo_for_Matrix_multiplication();
System.out.println("Enter the order of the matrices:- ");
int N = sc.nextInt();
// Matrix A
int[][] A = new int[N][N];
System.out.println("Enter elements of Matrix A:- ");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
A[i][j] = sc.nextInt();
sc.nextLine();
}
// Matrix B
int[][] B = new int[N][N];
System.out.println("Enter elements of Matrix B:- ");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
B[i][j] = sc.nextInt();
sc.nextLine();
}
// Resultant Matrix after multiplying matrices A and B
int[][] output = s.multiply(A, B);
System.out.println("\nProduct of matrices A and B : ");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
System.out.print(output[i][j] + " ");
System.out.println();
}
}
}
/*
* Note*:- This Algorithm is mainly used to multiply two square Matrices(NxN).
* Also this Algorithm provides an optimized way to multiply two large matrices.
*
*
* Time Complexity of Strassen's Algorithm:- O(n^2.81) log2(7) = 2.8073 i.e 2.81
* Space Complexity:- O(n^2.81)
*/
/*
Sample Testcase:
A = 1 2 3 4
4 3 0 1
5 6 1 1
0 2 5 6
B = 1 0 5 1
1 2 0 2
0 3 2 3
1 2 1 2
output = 7 21 15 22
8 8 21 12
12 17 28 22
8 31 16 31
*/