-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathAVL_Tree.java
201 lines (159 loc) · 4.82 KB
/
AVL_Tree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot
be more than one for all nodes and if at any time they differ by more than one, rebalancing is done to restore this property.
Each node maintains extra information called a balance factor whose value is either -1, 0 or +1 where balance factor of node
in an AVL tree is the difference between the height of the left subtree and that of the right subtree of that node.
*/
import java.util.*;
public class AVL_Tree {
private Node root;
private class Node {
int data;
Node left;
Node right;
int height;
public Node(int data) {
this.data = data;
this.height = 1;
left = null;
right = null;
}
}
// Inserting node in a tree
public void insert(int num) {
this.root = insert(this.root, num);
}
// Inorder Traversal
public void inOrder(Node node) {
if (node != null) {
inOrder(node.left);
System.out.print(node.data + " ");
inOrder(node.right);
}
}
// Preorder traversal
public void preOrder(Node node) {
if (node != null) {
System.out.print(node.data + " ");
preOrder(node.left);
preOrder(node.right);
}
}
// Postorder traversal
public void postOrder(Node node) {
if (node != null) {
postOrder(node.left);
postOrder(node.right);
System.out.print(node.data + " ");
}
}
private Node insert(Node node, int num) {
if (node == null) {
Node node_new = new Node(num);
return node_new;
}
if (num > node.data) {
node.right = insert(node.right, num);
} else if (num < node.data) {
node.left = insert(node.left, num);
}
node.height = Math.max(height(node.left), height(node.right)) + 1;
int balancefactor = balancefactor(node);
// L-L Case
if (balancefactor > 1 && num < node.left.data) {
return rightRotate(node);
}
// R-R Case
if (balancefactor < -1 && num > node.right.data) {
return leftRotate(node);
}
// L-R Case
if (balancefactor > 1 && num > node.left.data) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// R-L Case
if (balancefactor < -1 && num < node.right.data) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
// Finding height of the node
private int height(Node node) {
if (node == null) {
return 0;
}
return node.height;
}
// Balance Factor (difference between the height of the left subtree and that of the right subtree of the node)
private int balancefactor(Node node) {
if (node == null) {
return 0;
}
return height(node.left) - height(node.right);
}
//Right rotation
private Node rightRotate(Node node) {
Node node1 = node.left;
Node node2 = node.left.right;
node1.right = node;
node.left = node2;
node.height = Math.max(height(node.left), height(node.right)) + 1;
node1.height = Math.max(height(node1.left), height(node1.right)) + 1;
return node1;
}
//Left rotation
private Node leftRotate(Node node) {
Node node1 = node.right;
Node node2 = node1.left;
node1.left = node;
node.right = node2;
node.height = Math.max(height(node.left), height(node.right)) + 1;
node1.height = Math.max(height(node1.left), height(node1.right)) + 1;
return node1;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
AVL_Tree tree = new AVL_Tree();
System.out.println("Enter the number of nodes: ");
int num = sc.nextInt();
System.out.println("Enter the value of nodes: ");
for (int i = 0; i < num; i++) {
int value = sc.nextInt();
tree.insert(value);
}
System.out.println("Preorder display: ");
tree.preOrder(tree.root);
System.out.println("\n\nInorder display: ");
tree.inOrder(tree.root);
System.out.println("\n\nPostorder display: ");
tree.postOrder(tree.root);
}
}
/*
Enter the number of nodes:
10
Enter the value of nodes:
10
20
40
30
80
60
50
44
22
18
Preorder display:
40 20 10 18 30 22 60 50 44 80
Inorder display:
10 18 20 22 30 40 44 50 60 80
Postorder display:
18 10 22 30 20 44 50 80 60 40
--------------------------------
Space Complexity :
O(n) in all the cases
Time Complexity :
O(log n) in all the cases
*/