-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathpolynomial.java
204 lines (188 loc) · 6.33 KB
/
polynomial.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/******************************************************************************
Author - @Suvraneel
Suvraneel Bhuin
* Implementation of a Polynomial Addition & multiplication using Linked Lists in Java *
******************************************************************************/
import java.util.*;
class LinkedList
{
// Structure containing exponent and coefficient of variable
static class Term {
int coefficient;
int exponent;
//Link to next Term in singly LL
Term link;
}
// Function add a new Term at the end of list
static Term addTerm(Term head, int coefficient, int exponent)
{
// Create a new Term
Term nd = new Term();
nd.coefficient = coefficient;
nd.exponent = exponent;
//Link pointing to null because this is leaf node as of yet
nd.link = null;
// If linked list is empty
if (head == null)
return nd;
// Initiate a pointer at the head to start traversal
Term ptr = head;
// Traverse until leaf Term
while (ptr.link != null)
ptr = ptr.link;
//return leaf term
ptr.link = nd;
return head;
}
// Function to collapse the expanded form by merging duplicates in 1 term
static void collapse(Term head)
{
Term polyA;
Term polyB;
polyA = head;
//outer loop => for every term in poynomial,
while (polyA != null && polyA.link != null) {
polyB = polyA;
//inner loop => iterate through the rest of the loop to find redundant elements
while (polyB.link != null) {
// If exponent of two elements are same
if (polyA.exponent == polyB.link.exponent) {
// Collapse them onto the 1st occurance of that term (ie, term currently in outer loop)
polyA.coefficient += polyB.link.coefficient;
polyB.link = polyB.link.link;
}
// If exponent not same, check the other terms - inner loop
else polyB = polyB.link;
}
//check similarly for the next term as well - outer loop
polyA = polyA.link;
}
}
// Function two Add two polynomial Numbers
static Term sum(Term poly1, Term poly2, Term sumPoly)
{
// Initiate 2 pointers for the 2 polynomials
Term polyA;
polyA = poly1;
Term polyB;
polyB = poly2;
// Copy the terms of 1st polynomial to sumpoly
while (polyA != null) {
sumPoly = addTerm(sumPoly, polyA.coefficient, polyA.exponent);
polyA = polyA.link;
}
//Add the terms of 2nd polynomial to sumPoly
while (polyB != null) {
sumPoly = addTerm(sumPoly, polyB.coefficient, polyB.exponent);
polyB = polyB.link;
}
//call collapse function to minimise number of similar terms
collapse(sumPoly);
return sumPoly;
}
// Function two Multiply two polynomial Numbers
static Term multiply(Term poly1, Term poly2, Term pdtPoly)
{
// Initiate 2 pointers for traversing the 2 polynomials
Term polyA;
Term polyB;
polyA = poly1;
polyB = poly2;
//for every term in 1st polynomial, multiply it with each term in 2nd polynomial
while (polyA != null) {
while (polyB != null) {
int coefficient;
int exponent;
// Add the exponents to get result exponent
exponent = polyA.exponent + polyB.exponent;
// Call Multiply function passing the coefficients
coefficient = polyA.coefficient * polyB.coefficient;
// call addTerm function passing 3 parameters
// thus adding the resultant term as node in the resultant polynomial
pdtPoly = addTerm(pdtPoly, coefficient, exponent);
// move the pointer to the next term (node)
polyB = polyB.link;
}
// Reset the pointer for new loop
polyB = poly2;
//move the pointer to the next term (node)
polyA = polyA.link;
}
// collapse function (since pdt is in expanded form, minimise it)
collapse(pdtPoly);
return pdtPoly;
}
// Function To Display The passed polynomial's LL
static void displayPoly(Term ptr)
{
//traverse & keep printing as long as leaf node is not found
while (ptr.link != null) {
System.out.print( ptr.coefficient + "x^" + ptr.exponent + " + ");
ptr = ptr.link;
}
// Print the leaf node (ie, coefficient of x^0 term)
System.out.print( ptr.coefficient +"\n");
}
// Main Driver Code
public static void main(String[] args)
{
//Initiate nodes for holding input polynomials & resultant polynomials to null
Term poly1 = null;
Term poly2 = null;
Term sumPoly = null;
Term pdtPoly = null;
Scanner myObj = new Scanner(System.in);
//Take input for 1st polynomial
System.out.print("Enter number of terms in 1st Polynomial: \t");
int noOfTerms = myObj.nextInt();
System.out.print("Enter 1st Polynomial as <coefficient exponent> : \t");
for (int i=0; i<noOfTerms; i++){
int coff = myObj.nextInt();
int exp = myObj.nextInt();
// Add the term as a node into the 1st polynomial LL
poly1 = addTerm(poly1, coff, exp);
}
//Take input for 2nd polynomial
System.out.print("Enter number of terms in 2nd Polynomial: \t");
noOfTerms = myObj.nextInt();
System.out.print("Enter 2nd Polynomial as <coefficient exponent> : \t");
for (int i=0; i<noOfTerms; i++){
int coff = myObj.nextInt();
int exp = myObj.nextInt();
// Add the term as a node into the 2nd polynomial LL
poly2 = addTerm(poly2, coff, exp);
}
// Displaying 1st polynomial
System.out.print("1st Polynomial = \t\t");
displayPoly(poly1);
// Displaying 2nd polynomial
System.out.print("2nd Polynomial = \t\t");
displayPoly(poly2);
//calling sum function to evaluate (poly1 + poly2)
sumPoly = sum(poly1, poly2, sumPoly);
System.out.print( "Resultant Sum Polynomial = \t");
displayPoly(sumPoly);
// calling multiply function to evaluate (poly1 * poly2)
pdtPoly = multiply(poly1, poly2, pdtPoly);
// Displaying Resultant Polynomial
System.out.print( "Resultant Product Polynomial = \t");
displayPoly(pdtPoly);
}
}
/*
Time Complexity: O(n^2)
AddTerm = O(n)
Collapse = O(n^2)
Sum = O(n^2) (for collapse call)
Multiply = O(n^2)
Print LL = O(n)
Sample Run:
Enter number of terms in 1st Polynomial: 5
Enter 1st Polynomial as <coefficient exponent> : 10 6 5 4 3 3 4 1 7 0
Enter number of terms in 2nd Polynomial: 3
Enter 2nd Polynomial as <coefficient exponent> : 6 3 2 1 5 0
1st Polynomial = 10x^6 + 5x^4 + 3x^3 + 4x^1 + 7
2nd Polynomial = 6x^3 + 2x^1 + 5
Resultant Sum Polynomial = 10x^6 + 5x^4 + 9x^3 + 6x^1 + 12
Resultant Product Polynomial = 60x^9 + 50x^7 + 68x^6 + 10x^5 + 55x^4 + 57x^3 + 8x^2 + 34x^1 + 35
*/