-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathmax_sum_k_consecutive_elements.py
33 lines (27 loc) · 1.69 KB
/
max_sum_k_consecutive_elements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#Problem Statement: To find out the maximum sum of k consecutive elements in an array
# For example: Input : arr = {40, 30, 50, 10}, k = 2
# Output: 80
def maxSumofKelements(arr, n, k):
if(k > n):
return -1; #k must be smaller than n
ans = 0;
for i in range(0, k): #first we find sum of first k elements
ans += int(arr[i])
curr_sum = ans #curr_sum is the current sum
for i in range(k, n):
curr_sum += int(arr[i]) - int(arr[i - k])
ans = max(ans, curr_sum)
return ans
n = int(input("Enter number of elements in array: ")); #inputting num of elements in array
input_string = input("Enter array elements in a single line seperated with spaces : ") #inputting array elements
arr = input_string.split()
k = int(input("Enter k: ")) #inputting k
print("Maximum sum of k consecutive elements in array is: " + str(maxSumofKelements(arr, n, k)))
#Sample test case:
# arr = {50, 70, 30, 10}, k = 2, n = 4
# 1. ans = 0, now once the for loop is executed, ans becomes 120 (50 + 70)
# 2. Now we have to check whether any other sum of k consecutive elements is greater than our initial sum.
# 3. Now we run a loop from k to n, and everytime we calculate curr_sum and check whether it is greater than our ans or not, if it is greater, we update our ans.
# 4. Iterations: curr_sum = 120 + 30 - 50 = 100(i.e 70 + 30) (So here we calculated arr[1] + arr[2]) (i = 2)(ans > curr_sum, therefore, ans = 120)
# curr_sum = 100 + 10 - 70 = 40(i.e. 30 + 40) (arr[2] + arr[3]) (i = 3)(ans > curr_sum, therefore, ans = 120)
# 5. So the final ans is 120