-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathPronic_numbers.py
48 lines (36 loc) · 1.26 KB
/
Pronic_numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
'''
A pronic number is a number which is the product of two consecutive integers.
Such as 2=2*1 (2 and 1 are consecutive numbers)
12=4*3
This program will print the pronic numbers in the given range. '''
import math
'''Function to check whether number is pronic or not
A number is pronic if the root of equation i^2+i-num=0 is real and integer.'''
def is_pronic(n):
dis = 1 + 4 * n
if dis <= 0:
return 0
else:
root = int(math.sqrt(dis))
if root * root == dis and dis % 2 == 1:
return 1
else:
return 0
if __name__ == '__main__':
ran_ge = list(input("Enter range to print all the PRONIC NUMBERS: ").split())
#Printing pronic numbers in given range
print("PRONIC NUMBERS from "+ ran_ge[0] +" to "+ran_ge[1]+" are:")
for i in range(int(ran_ge[0]),int(ran_ge[1])+1):
if is_pronic(i):
print(i,end=" ")
'''
Sample Input/Output:
Input:
Enter range to print all the PRONIC NUMBERS: 1 1000
Output:
PRONIC NUMBERS from 1 to 1000 are:
2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812 870 930 992
Time Complexity:O(n) where n is total numbers in range
Time Complexity of is_pronic()=O(1)
Space Complexity:O(1)
'''