-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtf_replicate_model_fn.py
823 lines (672 loc) · 31.7 KB
/
tf_replicate_model_fn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to replicate model_fn's over local GPUs.
This file contains util that allow to replicate `Estimator.model_fn` over
GPUs. Replicated version of a `model_fn` is returned that can subsequently
be used with `Estimator`.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
from contextlib import contextmanager
import copy
import six
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.client import device_lib
from tensorflow.python.estimator import model_fn as model_fn_lib
from tensorflow.python.estimator import util
from tensorflow.python.estimator.export import export_output as export_output_lib
from tensorflow.python.framework import device as framework_device
from tensorflow.python.framework import ops as ops_lib
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops.losses import losses
from tensorflow.python.platform import tf_logging
from tensorflow.python.training import device_setter as device_setter_lib
from tensorflow.python.training import optimizer as optimizer_lib
def replicate_model_fn(model_fn,
loss_reduction=losses.Reduction.SUM_BY_NONZERO_WEIGHTS,
devices=None):
"""Replicate `Estimator.model_fn` over GPUs.
The given `model_fn` specifies a single forward pass of a model. To replicate
such a model over GPUs, each GPU gets its own instance of the forward pass
(a.k.a. a tower). The input features and labels get sharded into the chunks
that correspond to the number of GPUs. Each tower computes a loss based
on its input. For each such loss, gradients are computed. After that, the
available losses are aggregated to form aggregated loss. Available
gradients are summed. Then, they update weights using the specified
optimizer.
If `devices` are `None`, then all available GPUs are going to be used for
replication. If no GPUs are available, then the model is going to be
placed on the CPU.
Two modes of local replication over available GPUs are supported:
1) If exactly 1 GPU is detected, then variables and operations are placed
onto the GPU.
2) If more than 1 GPU is detected, then variables are going to be placed on
the CPU. Replicas of operations are placed on each individual GPU.
Here is an example of how one might use their `model_fn` to run over GPUs:
```python
...
def model_fn(...): # See `model_fn` in `Estimator`.
loss = ...
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
if mode == tf.estimator.ModeKeys.TRAIN:
# See the section below on `EstimatorSpec.train_op`.
return EstimatorSpec(mode=mode, loss=loss,
train_op=optimizer.minimize(loss))
# No change for `ModeKeys.EVAL` or `ModeKeys.PREDICT`.
return EstimatorSpec(...)
...
classifier = tf.estimator.Estimator(
model_fn=tf.contrib.estimator.replicate_model_fn(model_fn))
```
Please see `DNNClassifierIntegrationTest` for an example with a canned
Estimator.
On `EstimatorSpec.train_op`:
`model_fn` returns `EstimatorSpec.train_op` for
`tf.estimator.GraphKeys.TRAIN`. It is typically derived using an optimizer.
Towers are expected to populate it in the same way. Gradients from all towers
are reduced and applied in the last tower. To achieve that in the case of
multiple towers, `TowerOptimizer` needs to be used. See `TowerOptimizer`.
On sharding input features and labels:
Input features and labels are split for consumption by each tower. They are
split across the dimension 0. Features and labels need to be batch major.
On reduction algorithms:
Certain algorithms were chosen for aggregating results of computations on
multiple towers:
- Losses from all towers are reduced according to `loss_reduction`.
- Gradients from all towers are reduced according to `loss_reduction`
for each trainable variable.
- `eval_metrics_ops` are reduced per metric using `reduce_mean`.
- `EstimatorSpec.predictions` and `EstimatorSpec.export_outputs` are
reduced using concatenation.
- For all other fields of `EstimatorSpec` the values of the first tower
are taken.
On distribution of variables:
Variables are not duplicated between towers. Instead, they are placed on a
single device as defined above and shared across towers.
On overhead:
If only one device is specified, then aggregation of loss and gradients
doesn't happen. Replication consists of placing `model_fn` onto the
specified device.
On current limitations:
- `predictions` are not supported for `ModeKeys.EVAL`. They are required
for `tf.contrib.estimator.add_metrics`.
Args:
model_fn: `model_fn` as defined in `Estimator`. See the section above about
the train_op argument of `EstimatorSpec`.
loss_reduction: controls whether losses are summed or averaged.
devices: Optional list of devices to replicate the model across. This
argument can be used to replicate only on the subset of available GPUs.
If `None`, then all available GPUs are going to be used for replication.
If no GPUs are available, then the model is going to be placed on the CPU.
Raises:
ValueError: if there is no `loss_reduction` or if TowerOptimizer is
mis-used.
Returns:
A replicated version of the supplied `model_fn`. Returned function that
conforms to the requirements of `Estimator`'s `model_fn` and can be used
instead of the supplied `model_fn`.
"""
return _replicate_model_fn_with_mode(
model_fn,
loss_reduction,
devices,
# TODO(isaprykin): Query the system configuration to choose modes other
# than `SHARED_LOCAL_PARAMETER_SERVER`, even though it is often
# appropriate.
mode=_VariableDistributionMode.SHARED_LOCAL_PARAMETER_SERVER)
class _VariableDistributionMode(object):
"""Modes for variable distribution used for forcing a particular one.
Forcing a mode is meant for performance experimentation purposes rather than
for general use cases.
"""
SHARED_LOCAL_PARAMETER_SERVER = 1
"""Variables are placed on a single device and shared across all devices.
Two ways to achieve this distribution over available GPUs are supported:
1) If exactly 1 GPU is detected, then variables and operations are placed
onto GPU.
2) If more than 1 GPU is detected, then variables are going to be placed on
the CPU. Replicas of operations are placed on each individual GPU.
"""
SHARED_ROUND_ROBIN = 2
"""Variables are placed on all devices in a round-robin fashion.
Every subsequent variable is placed on the next device. There is only one
copy of each variable that is shared across all devices.
"""
def _replicate_model_fn_with_mode(
model_fn,
loss_reduction,
devices=None,
mode=_VariableDistributionMode.SHARED_LOCAL_PARAMETER_SERVER):
"""A version of `replicate_model_fn` that allows to specify a `mode`."""
if loss_reduction == losses.Reduction.NONE:
raise ValueError('Tower losses need to be reduced in some way, yet {} '
'reduction is specified.'.format(loss_reduction))
if not devices:
devices = _get_local_devices('GPU') or _get_local_devices('CPU')
is_a_single_gpu_case = len(devices) == 1 and 'GPU' in devices[0].upper()
consolidation_device = devices[0] if is_a_single_gpu_case else '/CPU:0'
ps_devices = [consolidation_device]
if mode == _VariableDistributionMode.SHARED_ROUND_ROBIN:
ps_devices = devices
tf_logging.info('Replicating the `model_fn` across {}. Variables are going '
'to be placed on {}. Consolidation device is going to be {}.'
.format(devices, ps_devices, consolidation_device))
def single_device_model_fn(features, labels, mode, params=None, config=None):
"""`model_fn` on a single device without reduction overhead."""
return _get_loss_towers(
model_fn=model_fn,
mode=mode,
features=[features],
labels=[labels],
params=params,
loss_reduction=loss_reduction,
config=config,
devices=devices,
local_ps_devices=ps_devices)[0] # One device, so one spec is out.
def replicated_model_fn(features, labels, mode, params=None, config=None):
"""Replicated version of `model_fn` to be used instead."""
feature_shards, label_shards = _split_batch(
features, labels, len(devices), device=consolidation_device)
tower_specs = _get_loss_towers(
model_fn=model_fn,
mode=mode,
features=feature_shards,
labels=label_shards,
params=params,
loss_reduction=loss_reduction,
config=config,
devices=devices,
local_ps_devices=ps_devices)
if mode == model_fn_lib.ModeKeys.TRAIN:
train_op = _minimize_towers(tower_specs)
return _train_spec(
tower_specs, train_op, aggregation_device=consolidation_device)
elif mode == model_fn_lib.ModeKeys.EVAL:
return _eval_spec(tower_specs, aggregation_device=consolidation_device)
elif mode == model_fn_lib.ModeKeys.PREDICT:
return _predict_spec(tower_specs, aggregation_device=consolidation_device)
if len(devices) == 1:
return single_device_model_fn
else:
return replicated_model_fn
class TowerOptimizer(optimizer_lib.Optimizer):
"""Gathers gradients from all towers and reduces them in the last one."""
COLLECTION_FOR_GRAPH_STATES = 'replicate_model_fn_graph_states'
def __init__(self, optimizer_or_optimizer_fn):
"""Wrap an existing optimizer for gathering gradients across towers.
Each invocation of model_fn has to call the same optimizers in the same
order.
Multiple optimizers that use the same or different losses are supported.
If TowerOptimizer is used but `replicate_model_fn` isn't, then no
aggregation will happen. All calls will simply be forwarded to the
underlying optimizer. The behavior is similar if there is only one tower.
If TowerOptimizer is used together with SyncReplicasOptimizer that wraps
the user's optimizer, then it's the SyncReplicasOptimizer that needs to be
wrapped with TowerOptimizer.
Args:
optimizer_or_optimizer_fn: an instance of optimizer to wrap. That
instance is going to be used for optimizer-specific logic. This can
also be a no-argument function that returns such an optimizer instance.
"""
self._optimizer_or_optimizer_fn = optimizer_or_optimizer_fn
@staticmethod
def has_been_used():
return TowerOptimizer._graph_state().has_tower_optimizer_been_used
def get_slot(self, *args, **kwargs):
return self._get_optimizer().get_slot(*args, **kwargs)
def get_slot_names(self, *args, **kwargs):
return self._get_optimizer().get_slot_names(*args, **kwargs)
def get_name(self, *args, **kwargs):
return self._get_optimizer().get_name(*args, **kwargs)
def variables(self, *args, **kwargs):
return self._get_optimizer().variables(*args, **kwargs)
def compute_gradients(self, loss, *args, **kwargs):
"""Compute gradients, but first, if needed, scale the loss."""
loss = _scale_loss(loss,
self._graph_state().loss_reduction,
self._graph_state().number_of_towers)
return self._get_optimizer().compute_gradients(loss, *args, **kwargs)
def apply_gradients(self, grads_and_vars, global_step=None, **kwargs):
"""Collect gradients updates to apply them with the last tower."""
if self._graph_state().number_of_towers == 1:
# Avoid the overhead of reduction if there's only one tower.
#
# There assumed to be only one tower if aggregation-related methods were
# not called by `_get_loss_towers`, for example if the model_fn uses
# TowerEstimator, but `replicate_model_fn` isn't used.
return self._get_optimizer().apply_gradients(grads_and_vars, global_step,
**kwargs)
self._graph_state().collect_gradients(grads_and_vars)
if not self._graph_state().is_the_last_tower:
with ops_lib.control_dependencies(_extract_tensors(grads_and_vars)):
return self._construct_no_op_train_op()
else:
# Gradients need to be gathered and applied in the scope of the first
# tower, so that the tensors are accessible via names without prefixes.
var_scope, name_scope = self._graph_state().scopes_of_the_first_tower
with variable_scope.variable_scope(var_scope):
with ops_lib.name_scope(name_scope):
return self._apply_gathered_gradients(global_step, **kwargs)
def _apply_gathered_gradients(self, global_step, **kwargs):
graph_state = self._graph_state()
optimizer = self._get_optimizer()
grad_lists = {}
for grad, var in graph_state.get_latest_gradients_from_all_towers():
if grad is not None:
grad_lists.setdefault(var, []).append(grad)
aggregated_grads = []
with ops_lib.name_scope('gradient_aggregating'):
for var, grads in six.iteritems(grad_lists):
grad = _compute_sum_on_device(grads, var.device)
aggregated_grads.append((grad, var))
return optimizer.apply_gradients(
aggregated_grads, global_step=global_step, **kwargs)
def _get_optimizer(self):
if callable(self._optimizer_or_optimizer_fn):
# If optimizer is given as a function then we need to wait till we are
# under the right graph context before constructing it. That's why the
# optimizer is constructed in _get_optimizer() rather than __init__().
self._optimizer_or_optimizer_fn = self._optimizer_or_optimizer_fn()
self._graph_state().has_tower_optimizer_been_used = True
return self._optimizer_or_optimizer_fn
def _construct_no_op_train_op(self):
return control_flow_ops.no_op(name='train_op_placeholder')
@staticmethod
def _graph_state():
graph_states = ops_lib.get_default_graph().get_collection_ref(
TowerOptimizer.COLLECTION_FOR_GRAPH_STATES)
if not graph_states:
graph_states.append(TowerOptimizer._PerGraphState())
return graph_states[-1]
@staticmethod
def _did_towers_have_same_optimizer_calls():
graph_state = TowerOptimizer._graph_state()
return graph_state.did_towers_have_same_optimizer_calls()
@staticmethod
def _clear_graph_state():
# Clearing the Graph collection will prevent _PerGraphState from being
# serialized.
ops_lib.get_default_graph().clear_collection(
TowerOptimizer.COLLECTION_FOR_GRAPH_STATES)
class _PerGraphState(object):
"""Gradient reduction related state of a Tensorflow graph."""
def __init__(self):
self._collected_grads_and_vars = defaultdict(list)
self._current_tower_index = 0
self._number_of_towers = 1
self._loss_reduction = None
# Scopes of the first tower that don't have a prefix:
self._variable_scope = None
self._name_scope = None
# If needed, alert that TowerOptimizer needs to be used with model_fn.
self._has_tower_optimizer_been_used = False
def collect_gradients(self, grads_and_vars):
self._collected_grads_and_vars[self._current_tower_index].append(
grads_and_vars)
def get_latest_gradients_from_all_towers(self):
"""Get gradients across towers for the last called optimizer."""
grads_and_vars = []
index_of_last_gradients = len(
self._collected_grads_and_vars[self._current_tower_index]) - 1
for tower_id in range(self._current_tower_index + 1):
grads_and_vars.extend(
self._collected_grads_and_vars[tower_id][index_of_last_gradients])
return grads_and_vars
def set_reduction_across_towers(self, loss_reduction, number_of_towers):
self._loss_reduction = loss_reduction
self._number_of_towers = number_of_towers
@contextmanager
def tower(self, tower_id, var_scope, name_scope):
if tower_id == 0:
self._variable_scope = var_scope
self._name_scope = name_scope
self._current_tower_index = tower_id
yield
@property
def scopes_of_the_first_tower(self):
return self._variable_scope, self._name_scope
@property
def is_the_last_tower(self):
return self._current_tower_index == (self._number_of_towers - 1)
@property
def number_of_towers(self):
return self._number_of_towers
@property
def loss_reduction(self):
return self._loss_reduction
@property
def has_tower_optimizer_been_used(self):
return self._has_tower_optimizer_been_used
@has_tower_optimizer_been_used.setter
def has_tower_optimizer_been_used(self, value):
self._has_tower_optimizer_been_used = value
def did_towers_have_same_optimizer_calls(self):
total_number_of_grads = sum([
len(grads)
for _, grads in six.iteritems(self._collected_grads_and_vars)
])
return total_number_of_grads % self._number_of_towers == 0
def _get_local_devices(device_type):
local_device_protos = device_lib.list_local_devices()
return [
device.name
for device in local_device_protos
if device.device_type == device_type
]
def _split_batch(features, labels, number_of_shards, device):
"""Split input features and labes into batches."""
def ensure_divisible_by_shards(sequence):
batch_size = ops_lib.convert_to_tensor(sequence).get_shape()[0]
if batch_size % number_of_shards != 0:
raise ValueError(
'Batch size {} needs to be divisible by the number of GPUs, which '
'is {}.'.format(batch_size, number_of_shards))
def split_dictionary(dictionary):
"""Split a dictionary into shards."""
shards = [{} for _ in range(number_of_shards)]
for name, tensor in six.iteritems(dictionary):
if isinstance(tensor, sparse_tensor.SparseTensor):
for i, shard in enumerate(
sparse_ops.sparse_split(
sp_input=tensor, num_split=number_of_shards, axis=0)):
shards[i][name] = shard
else:
ensure_divisible_by_shards(tensor)
for i, shard in enumerate(array_ops.split(tensor, number_of_shards)):
shards[i][name] = shard
return shards
with ops_lib.name_scope('split_inputs'):
with ops_lib.device(device):
if isinstance(features, dict):
feature_shards = split_dictionary(features)
else:
ensure_divisible_by_shards(features)
feature_shards = array_ops.split(features, number_of_shards)
if labels is None:
label_shards = None
elif isinstance(labels, dict):
label_shards = split_dictionary(labels)
else:
ensure_divisible_by_shards(labels)
label_shards = array_ops.split(labels, number_of_shards)
return feature_shards, label_shards
_DEFAULT_NAME_SCOPE_PATTERN = 'tower_{}'
def _get_loss_towers(model_fn,
mode,
features,
labels,
params,
config,
devices,
local_ps_devices,
loss_reduction,
name_scope_pattern=_DEFAULT_NAME_SCOPE_PATTERN):
"""Replicate the loss computation across devices."""
tower_specs = []
model_fn_args = util.fn_args(model_fn)
optional_params = {}
if 'params' in model_fn_args:
optional_params['params'] = copy.deepcopy(params)
if 'config' in model_fn_args:
optional_params['config'] = copy.deepcopy(config)
# pylint: disable=protected-access
round_robin_strategy = device_setter_lib._RoundRobinStrategy(
num_tasks=len(local_ps_devices))
TowerOptimizer._graph_state().set_reduction_across_towers(
loss_reduction, len(devices))
for i, device in enumerate(devices):
is_the_first_tower = (i == 0)
device_setter = _local_device_setter(
worker_device=device,
ps_devices=local_ps_devices,
ps_strategy=round_robin_strategy)
# We would like to preserve the names of the variables and ops that the user
# might be relying on. Names without a prefix are going to resolve to
# variables and ops of the first tower.
name_scope = name_scope_pattern
if is_the_first_tower:
name_scope = ''
with variable_scope.variable_scope(
'', reuse=not is_the_first_tower) as var_scope:
with ops_lib.name_scope(name_scope.format(i)) as name_scope:
with TowerOptimizer._graph_state().tower(
tower_id=i, var_scope=var_scope, name_scope=name_scope):
with ops_lib.device(device_setter):
labels_shard = None
if labels:
labels_shard = labels[i]
tower_spec = model_fn(
mode=mode,
features=features[i],
labels=labels_shard,
**optional_params)
if (tower_spec.train_op is not None and len(devices) > 1 and
not TowerOptimizer.has_been_used()):
raise ValueError('Please wrap optimizers with TowerOptimizer'
' in order to use replicate_model_fn with'
' multiple `devices`.')
# Scaling the loss here doesn't actually affect gradients. Another
# instance of scaling happens inside the TowerOptimizer.
tower_spec = _scale_tower_loss(
tower_spec, loss_reduction, number_of_towers=len(devices))
tower_specs.append(tower_spec)
if not TowerOptimizer._did_towers_have_same_optimizer_calls():
raise ValueError('Each invocation of model_fn was supposed to make the same'
' optimizer calls.')
TowerOptimizer._clear_graph_state()
# pylint: enable=protected-access
return tower_specs
def _local_device_setter(worker_device, ps_devices, ps_strategy):
"""A device setter that puts distributes Var/Ops to PS/workers."""
ps_ops = ['Variable', 'VariableV2', 'VarHandleOp']
def local_device_chooser(op):
current_device = framework_device.DeviceSpec.from_string(op.device or '')
node_def = op if isinstance(op, node_def_pb2.NodeDef) else op.node_def
if node_def.op in ps_ops:
ps_device_spec = framework_device.DeviceSpec.from_string(
'{}'.format(ps_devices[ps_strategy(op)]))
ps_device_spec.merge_from(current_device)
return ps_device_spec.to_string()
else:
worker_device_spec = framework_device.DeviceSpec.from_string(
worker_device or '')
worker_device_spec.merge_from(current_device)
return worker_device_spec.to_string()
return local_device_chooser
def _scale_tower_loss(tower_spec, loss_reduction, number_of_towers):
"""Produce an EstimatorSpec with approproriately scaled loss."""
if tower_spec.loss is None:
return tower_spec
estimator_spec = _asdict(tower_spec)
estimator_spec['loss'] = _scale_loss(tower_spec.loss, loss_reduction,
number_of_towers)
return model_fn_lib.EstimatorSpec(**estimator_spec)
def _scale_loss(loss, loss_reduction, number_of_towers):
"""If needed, scale down the loss for averaging loss by summing."""
if loss is None:
return None
if number_of_towers == 1:
return loss
if loss_reduction != losses.Reduction.SUM:
return math_ops.div(loss, 1.0 * number_of_towers, name='averaged_loss')
else:
return loss
def _minimize_towers(tower_specs):
"""`train_op` of the last tower applies aggregated gradients."""
return tower_specs[-1].train_op
def _compute_sum_on_device(values, device, name=None):
with ops_lib.device(device):
if isinstance(values[0], ops_lib.IndexedSlices):
if name:
raise ValueError('The name {} is not expected to be given to '
'IndexedSlices {}'.format(name, values))
values_concat = array_ops.concat([v.values for v in values], axis=0)
indices_concat = array_ops.concat([v.indices for v in values], axis=0)
return ops_lib.IndexedSlices(values_concat, indices_concat,
values[0].dense_shape)
else:
return math_ops.add_n(values, name=name)
def _train_spec(tower_specs,
train_op,
aggregation_device,
aggregated_loss_name='loss'):
"""Populate replicated EstimatorSpec for `GraphKeys.TRAIN`."""
# Spec of the last tower is used as the template for the final spec, because
# some `EstimatorSpec.training_hooks` rely on calls made in model_fn. For
# example, `SyncReplicasOptimizerHook` validates the
# `SyncReplicasOptimizer.apply_gradients` call. `TowerEstimator` makes that
# call only in the last tower.
estimator_spec = _asdict(tower_specs[-1])
estimator_spec['mode'] = model_fn_lib.ModeKeys.TRAIN
estimator_spec['train_op'] = train_op
estimator_spec['loss'] = _compute_sum_on_device(
[spec.loss for spec in tower_specs], aggregation_device,
aggregated_loss_name)
return model_fn_lib.EstimatorSpec(**estimator_spec)
def _eval_spec(tower_specs, aggregation_device, aggregated_loss_name='loss'):
"""Populate replicated EstimatorSpec for `GraphKeys.EVAL`."""
estimator_spec = _asdict(tower_specs[0])
estimator_spec['mode'] = model_fn_lib.ModeKeys.EVAL
estimator_spec['loss'] = _compute_sum_on_device(
[spec.loss for spec in tower_specs], aggregation_device,
aggregated_loss_name)
update_ops = []
for tower_spec in tower_specs:
for name, (_, update_op) in six.iteritems(tower_spec.eval_metric_ops):
update_ops.append(update_op)
with ops_lib.control_dependencies(update_ops):
reduced_update_op = _reduce_metric_variables(len(tower_specs))
eval_metric_ops = {}
for name, (metric_tensor, _) in six.iteritems(tower_specs[0].eval_metric_ops):
eval_metric_ops[name] = (metric_tensor, reduced_update_op)
estimator_spec['eval_metric_ops'] = eval_metric_ops
return model_fn_lib.EstimatorSpec(**estimator_spec)
def _reduce_metric_variables(number_of_towers):
"""Aggregate local variables used in metrics into the first tower."""
if number_of_towers == 1:
return control_flow_ops.no_op(name='no_eval_metric_reduction')
metric_variables = ops_lib.get_collection(ops_lib.GraphKeys.METRIC_VARIABLES)
variables_per_tower = len(metric_variables) // number_of_towers
if len(metric_variables) % number_of_towers != 0:
raise ValueError(
'Different `EstimatorSpec.eval_metric_ops` across `model_fn()` calls.'
' Expected {} local variables, but got {} instead.'.format(
variables_per_tower * number_of_towers, len(metric_variables)))
# `metric_variables` has the size of `variables_per_tower` x
# number_of_towers. Each tower is produced by calling the same model_fn.
# First `variables_per_tower` correspond to the first tower. Each such
# variable has an replica at the `(variables_per_tower * i)` position, where
# `i` is `[1.. number_of_towers]`. We are going to add values from replicas
# to each variable of the first tower. We then zero out replica values, so
# that `_reduce_metric_variables` operation is idempotent. If a metric
# is then computed based on local variables from the first tower, then the
# resulting metric is an estimate for all `number_of_towers` towers.
ops = []
for i in range(0, variables_per_tower):
next_replica_id = i + variables_per_tower
replicas = [
metric_variables[replica_id]
for replica_id in range(next_replica_id, len(metric_variables),
variables_per_tower)
] # `replicas` doesn't contain the first-tower variable.
reduce_op = state_ops.assign_add(metric_variables[i],
math_ops.add_n(replicas))
with ops_lib.control_dependencies([reduce_op]):
for replica in replicas:
zeros_for_replica = array_ops.zeros(
array_ops.shape(replica), dtype=replica.dtype)
zero_out_replica_op = state_ops.assign(replica, zeros_for_replica)
ops.append(zero_out_replica_op)
return control_flow_ops.group(*ops)
def _predict_spec(tower_specs, aggregation_device):
"""Populate replicated EstimatorSpec for `GraphKeys.PREDICT`."""
estimator_spec = _asdict(tower_specs[0])
estimator_spec['mode'] = model_fn_lib.ModeKeys.PREDICT
with ops_lib.device(aggregation_device):
estimator_spec['predictions'] = _concat_tensor_dicts(
*[tower_spec.predictions for tower_spec in tower_specs])
export_outputs_dict = _dict_concat(
*[tower_spec.export_outputs for tower_spec in tower_specs])
export_outputs = {}
for name, export_output_list in six.iteritems(export_outputs_dict):
if isinstance(export_output_list[0], export_output_lib.PredictOutput):
export_outputs[name] = export_output_lib.PredictOutput(
outputs=_concat_tensor_dicts(*[
export_output.outputs for export_output in export_output_list
]))
elif isinstance(export_output_list[0],
export_output_lib.RegressionOutput):
export_outputs[name] = export_output_lib.RegressionOutput(
value=array_ops.concat(
[export_output.value for export_output in export_output_list],
axis=0))
elif isinstance(export_output_list[0],
export_output_lib.ClassificationOutput):
scores = None
if export_output_list[0].scores is not None:
scores = array_ops.concat(
[export_output.scores for export_output in export_output_list],
axis=0)
classes = None
if export_output_list[0].classes is not None:
classes = array_ops.stack(
[export_output.classes for export_output in export_output_list],
axis=0)
export_outputs[name] = export_output_lib.ClassificationOutput(
scores=scores, classes=classes)
estimator_spec['export_outputs'] = export_outputs
return model_fn_lib.EstimatorSpec(**estimator_spec)
def _concat_tensor_dicts(*tensor_dicts):
return {
name: array_ops.concat(tensors, axis=0, name=name)
for name, tensors in six.iteritems(_dict_concat(*tensor_dicts))
}
def _extract_tensors(tensors_and_vars):
tensors = []
for tensor_and_var in tensors_and_vars:
tensor, _ = tensor_and_var
if isinstance(tensor, ops_lib.IndexedSlices):
tensors.append(tensor.values)
elif tensor is not None:
tensors.append(tensor)
return tensors
def _dict_concat(*dicts):
list_dict = {}
for d in dicts:
if d is None:
continue
for k, v in six.iteritems(d):
list_dict.setdefault(k, []).append(v)
return list_dict
def _asdict(namedtuple):
"""Returns a namedtuple as a dictionary.
This is required because `_asdict()` in Python 3.x.x is broken in classes
that inherit from `collections.namedtuple`. See
https://bugs.python.org/issue24931 for more details.
Args:
namedtuple: An object that inherits from `collections.namedtuple`.
Returns:
A dictionary version of the tuple.
"""
return {k: getattr(namedtuple, k) for k in namedtuple._fields}