-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathvotenet.py
77 lines (77 loc) · 3.84 KB
/
votenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# https://mmdetection3d.readthedocs.io/zh_CN/latest/tutorials/config.html#votenet
model = dict(
type='VoteNet', # 检测器的类型,更多细节请参考 mmdet3d.models.detectors
backbone=dict(
type='PointNet2SASSG', # 主干网络的类型,更多细节请参考 mmdet3d.models.backbones
in_channels=4, # 点云输入通道数
num_points=(2048, 1024, 512, 256), # 每个 SA 模块采样的中心点的数量
radius=(0.2, 0.4, 0.8, 1.2), # 每个 SA 层的半径
num_samples=(64, 32, 16, 16), # 每个 SA 层聚集的点的数量
sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
(128, 128, 256)), # SA 模块中每个多层感知器的输出通道数
fp_channels=((256, 256), (256, 256)), # FP 模块中每个多层感知器的输出通道数
norm_cfg=dict(type='BN2d'), # 归一化层的配置
sa_cfg=dict( # 点集抽象 (SA) 模块的配置
type='PointSAModule',
pool_mod='max',
use_xyz=True,
normalize_xyz=True)),
bbox_head=dict(
type='VoteHead', # 检测框头的类型,更多细节请参考 mmdet3d.models.dense_heads
vote_module_cfg=dict(
in_channels=256,
vote_per_seed=1,
gt_per_seed=3,
conv_channels=(256, 256),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
norm_feats=True,
vote_loss=dict(
type='ChamferDistance',
mode='l1',
reduction='none',
loss_dst_weight=10.0)),
vote_aggregation_cfg=dict(
type='PointSAModule',
num_point=256,
radius=0.3,
num_sample=16,
mlp_channels=[256, 128, 128, 128],
use_xyz=True,
normalize_xyz=True),
pred_layer_cfg=dict(
in_channels=128, shared_conv_channels=(128, 128), bias=True),
conv_cfg=dict(type='Conv1d'), # 卷积的配置
norm_cfg=dict(type='BN1d'), # 归一化层的配置
# loss
objectness_loss=dict( # 物体性 (objectness) 损失函数的配置
type='CrossEntropyLoss', # 损失函数类型
class_weight=[0.2, 0.8], # 损失函数对每一类的权重
reduction='sum',
loss_weight=5.0),
center_loss=dict( # 中心 (center) 损失函数的配置
type='ChamferDistance',
mode='l2',
reduction='sum',
loss_src_weight=10.0,
loss_dst_weight=10.0),
dir_class_loss=dict( # 方向分类损失函数的配置
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
dir_res_loss=dict( # 方向残差 (residual) 损失函数的配置
type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
size_class_loss=dict( # 尺寸分类损失函数的配置
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
size_res_loss=dict( # 尺寸残差损失函数的配置
type='SmoothL1Loss', reduction='sum', loss_weight=10.0 / 3.0),
semantic_loss=dict( # 语义损失函数的配置
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)),
# model training and testing settings
train_cfg=dict( # VoteNet 训练的超参数配置
pos_distance_thr=0.3, # 距离 >= 0.3 阈值的样本将被视为正样本
neg_distance_thr=0.6, # 距离 < 0.6 阈值的样本将被视为负样本
sample_mod='vote'), # 采样方法的模式
test_cfg=dict( # VoteNet 测试的超参数配置
sample_mod='seed', # 采样方法的模式
nms_thr=0.25, # NMS 中使用的阈值
score_thr=0.05, # 剔除框的阈值
per_class_proposal=True)) # 是否使用逐类提议框 (proposal)