-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval_ouster.py
1246 lines (1132 loc) · 54.9 KB
/
eval_ouster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Description: kitti评测详细介绍(可适配自己的数据集评测)
Author: HCQ
Company(School): UCAS
Email: [email protected]
Date: 2022-09-04 12:30:40
LastEditTime: 2022-09-04 15:39:25
FilePath: /mmdetection3d/mmdet3d/core/evaluation/kitti_utils/eval_ouster.py
'''
# Copyright (c) OpenMMLab. All rights reserved.
import gc
import io as sysio
import numba
import numpy as np
@numba.jit
def get_thresholds(scores: np.ndarray, num_gt, num_sample_pts=41):
scores.sort()
scores = scores[::-1]
current_recall = 0
thresholds = []
for i, score in enumerate(scores):
l_recall = (i + 1) / num_gt
if i < (len(scores) - 1):
r_recall = (i + 2) / num_gt
else:
r_recall = l_recall
if (((r_recall - current_recall) < (current_recall - l_recall))
and (i < (len(scores) - 1))):
continue
# recall = l_recall
thresholds.append(score)
current_recall += 1 / (num_sample_pts - 1.0)
return thresholds
# #这个函数是处理一帧的数据, current_class是6个类别中的其中一类 current_class =1(pedestrian)
def clean_data(gt_anno, dt_anno, current_class, difficulty):
'''
print("____________clean_data() args:________________")
print('current_class : ',current_class)
print('difficulty : ',difficulty)
____________clean_data() args:________________
current_class : 0
difficulty : 0
'''
# CLASS_NAMES = ['car', 'pedestrian', 'cyclist'] # #类别
CLASS_NAMES = ['Truck','Auxiliary','Car','Excavator','Widebody','Pedestrian']
#检测难度从易到难,为了检测到同样数目的gt,使最小值减小,最大值增大
# MIN_HEIGHT = [40, 25, 25] #高度
# MAX_OCCLUSION = [0, 1, 2] #遮挡
# MAX_TRUNCATION = [0.15, 0.3, 0.5] #截断
# dc_bboxes, ignored_gt = [], []
ignored_gt, ignored_dt = [], []
current_cls_name = CLASS_NAMES[current_class].lower() # 'pedestrian' 报错:IndexError: list index out of range
# 获取当前帧中物体object的个数
num_gt = len(gt_anno['name']) #gt数量
num_dt = len(dt_anno['name'])
num_valid_gt = 0
#对num_gt中每一个物体object:
for i in range(num_gt):
#获取这个物体的name,并小写
gt_name = gt_anno["name"][i].lower()
valid_class = -1
# 如果该物体正好是 需要处理的当前的object,将valid_class值为 1
if (gt_name == current_cls_name):
valid_class = 1
else:
valid_class = -1
ignore = False
if valid_class == 1 and not ignore:
# 如果 为有效的物体, 且该物体object不忽略,
# 则ignored_gt上该值为0,有效的物体数num_valid_gt+1
ignored_gt.append(0)
num_valid_gt += 1 # 有效的gt数量
else:
ignored_gt.append(-1)
#对num_dt中每一个物体object:
for i in range(num_dt):
if (dt_anno["name"][i].lower() == current_cls_name):
valid_class = 1
else:
valid_class = -1
if valid_class == 1:
ignored_dt.append(0)
else:
ignored_dt.append(-1)
'''
print("__________有效的gt数量num_valid_gt____________")
print(num_valid_gt)
print("__________ignored_gt____________")
print(ignored_gt)
print("__________ignored_dt____________")
print(ignored_dt)
该函数的输出结果是
__________有效的gt数量num_valid_gt____________
4
__________ignored_gt____________
[0, 0, 0, 0]
__________ignored_dt____________
[0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
__________num_valid_gt____________
76
__________ignored_gt____________
[0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1,
-1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, -1, 0, -1, -1, -1, -1, -1, 0, 0,
0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 0, -1, 0, 0, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1]
__________ignored_dt____________
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1, 0, 0, -1, -1,
0, 0, 0, -1, -1, -1, -1, -1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1,
-1, -1, -1, 0, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1,
0, -1, -1, 0, 0, -1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, -1, -1,
-1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0,
0, 0, -1, -1, -1, -1, -1, 0, -1, 0, -1, 0, 0, -1, -1, -1, -1, -1, -1]
'''
return num_valid_gt, ignored_gt, ignored_dt
@numba.jit(nopython=True)
def image_box_overlap(boxes, query_boxes, criterion=-1):
N = boxes.shape[0]
K = query_boxes.shape[0]
overlaps = np.zeros((N, K), dtype=boxes.dtype)
for k in range(K):
qbox_area = ((query_boxes[k, 2] - query_boxes[k, 0]) *
(query_boxes[k, 3] - query_boxes[k, 1]))
for n in range(N):
iw = (
min(boxes[n, 2], query_boxes[k, 2]) -
max(boxes[n, 0], query_boxes[k, 0]))
if iw > 0:
ih = (
min(boxes[n, 3], query_boxes[k, 3]) -
max(boxes[n, 1], query_boxes[k, 1]))
if ih > 0:
if criterion == -1:
ua = ((boxes[n, 2] - boxes[n, 0]) *
(boxes[n, 3] - boxes[n, 1]) + qbox_area -
iw * ih)
elif criterion == 0:
ua = ((boxes[n, 2] - boxes[n, 0]) *
(boxes[n, 3] - boxes[n, 1]))
elif criterion == 1:
ua = qbox_area
else:
ua = 1.0
overlaps[n, k] = iw * ih / ua
return overlaps
# mmdet3d/core/evaluation/kitti_utils/rotate_iou.py
def bev_box_overlap(boxes, qboxes, criterion=-1):
from .rotate_iou import rotate_iou_gpu_eval
riou = rotate_iou_gpu_eval(boxes, qboxes, criterion)
return riou
@numba.jit(nopython=True, parallel=True)
def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1):
# ONLY support overlap in CAMERA, not lidar.?????????????//
# TODO: change to use prange for parallel mode, should check the difference
N, K = boxes.shape[0], qboxes.shape[0] #
for i in numba.prange(N): # 遍历每个gt box
for j in numba.prange(K): # 遍历要检测的图像
if rinc[i, j] > 0: # 如果高度方向有重叠
# iw = (min(boxes[i, 1] + boxes[i, 4], qboxes[j, 1] +
# qboxes[j, 4]) - max(boxes[i, 1], qboxes[j, 1]))
# # 重叠部分的高度
iw = (
min(boxes[i, 1], qboxes[j, 1]) - # # 重叠部分的最高点(取两个图像各自最高点的最小值)
max(boxes[i, 1] - boxes[i, 4],
qboxes[j, 1] - qboxes[j, 4])) # 重叠部分的最低点(取两个图像各自最低点的最大值)
if iw > 0:# 如果宽度方向有重叠
area1 = boxes[i, 3] * boxes[i, 4] * boxes[i, 5] # gt box 的面积
area2 = qboxes[j, 3] * qboxes[j, 4] * qboxes[j, 5] #检测图像的面积
inc = iw * rinc[i, j] # 重叠部分的面积
if criterion == -1: # 默认执行criterion = -1
ua = (area1 + area2 - inc) # 总的面积(交集)
elif criterion == 0:
ua = area1
elif criterion == 1:
ua = area2
else:
ua = inc
rinc[i, j] = inc / ua # 计算得到iou=================================
else:
rinc[i, j] = 0.0 # 否则就没有重叠
# boxes是GT,
def d3_box_overlap(boxes, qboxes, criterion=-1):
from .rotate_iou import rotate_iou_gpu_eval # mmdet3d/core/evaluation/kitti_utils/rotate_iou.py
rinc = rotate_iou_gpu_eval(boxes[:, [0, 2, 3, 5, 6]], # (9,7) 只要5维 : centers, dims,angles(clockwise when positive) with the shape of [N, 5].
qboxes[:, [0, 2, 3, 5, 6]], 2) # iou = np.zeros((N, K), dtype=np.float32
d3_box_overlap_kernel(boxes, qboxes, rinc, criterion)
return rinc # (9,9)
# TP,FP,TN,FN
@numba.jit(nopython=True)
def compute_statistics_jit(overlaps,
gt_datas,
dt_datas,
ignored_gt,
ignored_det,
metric,
min_overlap,
thresh=0,
compute_fp=False,
compute_aos=False):
det_size = dt_datas.shape[0]
gt_size = gt_datas
dt_scores = dt_datas[:, -1] #获取预测的得分情况 最后一列
#dt_scores = dt_datas
assigned_detection = [False] * det_size # 存储是否每个检测都分配给了一个gt。
ignored_threshold = [False] * det_size # 如果检测分数低于阈值,则存储数组
if compute_fp:
for i in range(det_size):
if (dt_scores[i] < thresh):
ignored_threshold[i] = True
NO_DETECTION = -10000000
tp, fp, fn, similarity = 0, 0, 0, 0
thresholds = np.zeros((gt_size,)) # 初始化为0
thresh_idx = 0
delta = np.zeros((gt_size, ))
delta_idx = 0
for i in range(gt_size): # 遍历GT
if ignored_gt[i] == -1:
#如果不是当前class,如vehicle类别,
# 则跳过当前循环,继续判断下一个类别
continue
det_idx = -1 #! 储存对此gt存储的最佳检测的idx
valid_detection = NO_DETECTION
max_overlap = 0
assigned_ignored_det = False
# 遍历det中的所有数据,找到一个与真实值最高得分的框!!!
for j in range(det_size):
# 如果该数据 无效,则跳过继续判断
if (ignored_det[j] == -1):
continue
if (assigned_detection[j]):
continue
if (ignored_threshold[j]):
continue
# 获取 overlaps 中相应的数值
overlap = overlaps[j, i]
# 获取这个预测框的得分
dt_score = dt_scores[j]
if (not compute_fp and (overlap > min_overlap) and dt_score > valid_detection):
det_idx = j
valid_detection = dt_score
elif (compute_fp and (overlap > min_overlap)
and (overlap > max_overlap or assigned_ignored_det)
and ignored_det[j] == 0):
max_overlap = overlap
det_idx = j
valid_detection = 1
assigned_ignored_det = False
elif (compute_fp and (overlap > min_overlap)
and (valid_detection == NO_DETECTION)
and ignored_det[j] == 1):
# 不存在该类别,: ignored_det[j] == 1
det_idx = j
valid_detection = 1
assigned_ignored_det = True
if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0:
# 如果没有找到,valid_detection还等于 NO_DETECTION,
# 且真实框确实属于vehicle类别,则fn+1
fn += 1
elif ((valid_detection != NO_DETECTION) and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)):
# 这种情况不存在:ignored_gt[i] == 1
assigned_detection[det_idx] = True
elif valid_detection != NO_DETECTION:
# 这种情况是检测出来了,且是正确的==================================================
tp += 1
# thresholds.append(dt_scores[det_idx])
thresholds[thresh_idx] = dt_scores[det_idx] # 阈值得到
thresh_idx += 1
assigned_detection[det_idx] = True
if compute_fp:
#遍历验证det中的每一个:
for i in range(det_size):
if (not (assigned_detection[i] or ignored_det[i] == -1
or ignored_det[i] == 1 or ignored_threshold[i])):
fp += 1
nstuff = 0
fp -= nstuff
if compute_aos:
tmp = np.zeros((fp + delta_idx, ))
# tmp = [0] * fp
for i in range(delta_idx):
tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0
# tmp.append((1.0 + np.cos(delta[i])) / 2.0)
# assert len(tmp) == fp + tp
# assert len(delta) == tp
if tp > 0 or fp > 0:
similarity = np.sum(tmp)
else:
similarity = -1
return tp, fp, fn, similarity, thresholds[:thresh_idx]
# def compute_statistics_jit(overlaps,
# gt_datas,
# dt_datas,
# ignored_gt,
# ignored_det,
# # dc_bboxes,
# metric,
# min_overlap,
# thresh=0,
# compute_fp=False,
# compute_aos=False):
# det_size = dt_datas.shape[0]
# gt_size = gt_datas.shape[0]
# dt_scores = dt_datas[:, -1]
# dt_alphas = dt_datas[:, 4]
# gt_alphas = gt_datas[:, 4]
# dt_bboxes = dt_datas[:, :4]
# # gt_bboxes = gt_datas[:, :4]
# assigned_detection = [False] * det_size
# ignored_threshold = [False] * det_size
# if compute_fp:
# for i in range(det_size):
# if (dt_scores[i] < thresh):
# ignored_threshold[i] = True
# NO_DETECTION = -10000000
# tp, fp, fn, similarity = 0, 0, 0, 0
# # thresholds = [0.0]
# # delta = [0.0]
# thresholds = np.zeros((gt_size, ))
# thresh_idx = 0
# delta = np.zeros((gt_size, ))
# delta_idx = 0
# for i in range(gt_size):
# if ignored_gt[i] == -1:
# continue
# det_idx = -1
# valid_detection = NO_DETECTION
# max_overlap = 0
# assigned_ignored_det = False
# for j in range(det_size):
# if (ignored_det[j] == -1):
# continue
# if (assigned_detection[j]):
# continue
# if (ignored_threshold[j]):
# continue
# overlap = overlaps[j, i]
# dt_score = dt_scores[j]
# if (not compute_fp and (overlap > min_overlap)
# and dt_score > valid_detection):
# det_idx = j
# valid_detection = dt_score
# elif (compute_fp and (overlap > min_overlap)
# and (overlap > max_overlap or assigned_ignored_det)
# and ignored_det[j] == 0):
# max_overlap = overlap
# det_idx = j
# valid_detection = 1
# assigned_ignored_det = False
# elif (compute_fp and (overlap > min_overlap)
# and (valid_detection == NO_DETECTION)
# and ignored_det[j] == 1):
# det_idx = j
# valid_detection = 1
# assigned_ignored_det = True
# if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0:
# fn += 1
# elif ((valid_detection != NO_DETECTION)
# and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)):
# assigned_detection[det_idx] = True
# elif valid_detection != NO_DETECTION:
# tp += 1
# # thresholds.append(dt_scores[det_idx])
# thresholds[thresh_idx] = dt_scores[det_idx]
# thresh_idx += 1
# if compute_aos:
# # delta.append(gt_alphas[i] - dt_alphas[det_idx])
# delta[delta_idx] = gt_alphas[i] - dt_alphas[det_idx]
# delta_idx += 1
# assigned_detection[det_idx] = True
# if compute_fp:
# for i in range(det_size):
# if (not (assigned_detection[i] or ignored_det[i] == -1
# or ignored_det[i] == 1 or ignored_threshold[i])):
# fp += 1
# nstuff = 0
# # if metric == 0:
# # overlaps_dt_dc = image_box_overlap(dt_bboxes, dc_bboxes, 0)
# # for i in range(dc_bboxes.shape[0]):
# # for j in range(det_size):
# # if (assigned_detection[j]):
# # continue
# # if (ignored_det[j] == -1 or ignored_det[j] == 1):
# # continue
# # if (ignored_threshold[j]):
# # continue
# # if overlaps_dt_dc[j, i] > min_overlap:
# # assigned_detection[j] = True
# # nstuff += 1
# fp -= nstuff
# if compute_aos:
# tmp = np.zeros((fp + delta_idx, ))
# # tmp = [0] * fp
# for i in range(delta_idx):
# tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0
# # tmp.append((1.0 + np.cos(delta[i])) / 2.0)
# # assert len(tmp) == fp + tp
# # assert len(delta) == tp
# if tp > 0 or fp > 0:
# similarity = np.sum(tmp)
# else:
# similarity = -1
# return tp, fp, fn, similarity, thresholds[:thresh_idx]
# 计算TP,FP,TN,FN
#@numba.jit(nopython=True)
def compute_statistics_jit1(
overlaps,
gt_datas, # 是一个数,表示当前帧中的物体个数
dt_datas, # N x 1阵列,表示的是预测得到的N个物体的得分情况score
ignored_gt,
ignored_det,
metric,
min_overlap,
thresh=0,
compute_fp=False,
compute_aos=False):
#print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&")
#print(ignored_gt)
#print(ignored_det)
det_size = dt_datas.shape[0]
gt_size = gt_datas
dt_scores = dt_datas #获取预测得到的N个物体的得分情况====================================================
#dt_scores = dt_datas
assigned_detection = [False] * det_size # 存储是否每个检测都分配给了一个gt。
ignored_threshold = [False] * det_size # 如果检测分数低于阈值,则存储数组
if compute_fp:
for i in range(det_size): # 遍历此帧的每个预测的的得分情况score
# print(dt_scores, dt_scores[i], i)
if (dt_scores[i] < thresh): # -1.0?????done # ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
ignored_threshold[i] = True
NO_DETECTION = -10000000
tp, fp, fn, similarity = 0, 0, 0, 0
thresholds = np.zeros((gt_size,))
thresh_idx = 0
delta = np.zeros((gt_size, ))
delta_idx = 0
for i in range(gt_size):
if ignored_gt[i] == -1:
#如果不是当前class,如vehicle类别,
# 则跳过当前循环,继续判断下一个类别
continue
det_idx = -1 #! 储存对此gt存储的最佳检测的idx
valid_detection = NO_DETECTION
max_overlap = 0
assigned_ignored_det = False
# 遍历det中的所有数据,找到一个与真实值最高得分的框
for j in range(det_size):
# 如果该数据 无效,则跳过继续判断
if (ignored_det[j] == -1):
continue
if (assigned_detection[j]):
continue
if (ignored_threshold[j]):
continue
# 获取 overlaps 中相应的数值
overlap = overlaps[j, i] ##!!!!============================================================
# 获取这个预测框的得分
dt_score = dt_scores[j]
if (not compute_fp and (overlap > min_overlap) and dt_score > valid_detection):
det_idx = j
valid_detection = dt_score
elif (compute_fp and (overlap > min_overlap)
and (overlap > max_overlap or assigned_ignored_det)
and ignored_det[j] == 0):
max_overlap = overlap
det_idx = j
valid_detection = 1
assigned_ignored_det = False
elif (compute_fp and (overlap > min_overlap)
and (valid_detection == NO_DETECTION)
and ignored_det[j] == 1):
# 不存在该类别,: ignored_det[j] == 1
det_idx = j
valid_detection = 1
assigned_ignored_det = True
if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0:
# 如果没有找到,valid_detection还等于 NO_DETECTION,
# 且真实框确实属于vehicle类别,则fn+1
fn += 1
elif ((valid_detection != NO_DETECTION) and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)):
# 这种情况不存在:ignored_gt[i] == 1
assigned_detection[det_idx] = True
elif valid_detection != NO_DETECTION:
# 这种情况是检测出来了,且是正确的
tp += 1 # ===========================================================
# thresholds.append(dt_scores[det_idx])
thresholds[thresh_idx] = dt_scores[det_idx]
thresh_idx += 1
assigned_detection[det_idx] = True
if compute_fp:
#遍历验证det中的每一个:
for i in range(det_size):
if (not (assigned_detection[i] or ignored_det[i] == -1
or ignored_det[i] == 1 or ignored_threshold[i])):
fp += 1
nstuff = 0
fp -= nstuff
if compute_aos:
tmp = np.zeros((fp + delta_idx, ))
# tmp = [0] * fp
for i in range(delta_idx):
tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0
# tmp.append((1.0 + np.cos(delta[i])) / 2.0)
# assert len(tmp) == fp + tp
# assert len(delta) == tp
if tp > 0 or fp > 0:
similarity = np.sum(tmp)
else:
similarity = -1
return tp, fp, fn, similarity, thresholds[:thresh_idx]
def get_split_parts(num, num_part):
same_part = num // num_part
remain_num = num % num_part
if remain_num == 0:
return [same_part] * num_part
else:
return [same_part] * num_part + [remain_num]
# 将各部分数据融合===
# @numba.jit(nopython=True) # 注释@ 不然报错 - argument 6: Unsupported array dtype: object
def fused_compute_statistics(overlaps,
pr,
gt_nums,
dt_nums,
# dc_nums,
gt_datas,
dt_datas,
# dontcares,
ignored_gts,
ignored_dets,
metric,
min_overlap,
thresholds,
compute_aos=False):
gt_num = 0
dt_num = 0
# dc_num = 0
for i in range(gt_nums.shape[0]):
for t, thresh in enumerate(thresholds):
overlap = overlaps[dt_num:dt_num + dt_nums[i], gt_num:gt_num + gt_nums[i]]
# gt_data = gt_datas[gt_num:gt_num + gt_nums[i]]
# dt_data = dt_datas[dt_num:dt_num + dt_nums[i]]
# ignored_gt = ignored_gts[gt_num:gt_num + gt_nums[i]]
# ignored_det = ignored_dets[dt_num:dt_num + dt_nums[i]]
# dontcare = dontcares[dc_num:dc_num + dc_nums[i]]
gt_data = gt_datas[i] # 修改!!!!!!!!!!!!==========================
dt_data = dt_datas[i]
ignored_gt = ignored_gts[i]
ignored_det = ignored_dets[i]
tp, fp, fn, similarity, _ = compute_statistics_jit1( # 计算tp, fp, fn, similarity, thresholds=======================================================
overlap, # 单个图像的iou值b/n gt和dt
gt_data, # # 是一个数,表示当前帧中的物体个数 # N x 5阵列
dt_data, # N x 6阵列?????????
ignored_gt,# 长度N数组,-1、0、1
ignored_det,# 长度N数组,-1、0、1
# dontcare,
metric,
min_overlap=min_overlap,
thresh=thresh, # 阈值
compute_fp=True,
compute_aos=compute_aos)
pr[t, 0] += tp
pr[t, 1] += fp
pr[t, 2] += fn
if similarity != -1:
pr[t, 3] += similarity
gt_num += gt_nums[i]
dt_num += dt_nums[i]
# dc_num += dc_nums[i]
# 计算iou(elif metric == 2:) num_parts=2 # 函数里面gt和dt互换了一下
def calculate_iou_partly(gt_annos, dt_annos, metric, num_parts=50): # num_parts=50 num_parts修改为2=================================
"""Fast iou algorithm. this function can be used independently to do result
analysis. Must be used in CAMERA coordinate system.
Args:
gt_annos (dict): Must from get_label_annos() in kitti_common.py.
dt_annos (dict): Must from get_label_annos() in kitti_common.py.
metric (int): Eval type. 0: bbox, 1: bev, 2: 3d.
num_parts (int): A parameter for fast calculate algorithm.
"""
assert len(gt_annos) == len(dt_annos) #
total_dt_num = np.stack([len(a['name']) for a in dt_annos], 0)# 每帧的障碍物数量 [ 1 3 6 5 13] [1 2 3 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1]
total_gt_num = np.stack([len(a['name']) for a in gt_annos], 0)# [50 50 50 50 50]
num_examples = len(gt_annos) # 测试集文件数,这里是19
split_parts = get_split_parts(num_examples, num_parts) # [9, 9, 1]
parted_overlaps = []
example_idx = 0
for num_part in split_parts: # [2, 2, 1] [10,10,10,10,10,1]
# # 基本上将数据集分成多个部分并进行迭代
gt_annos_part = gt_annos[example_idx:example_idx + num_part] # 分成9 9 1三部分
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
if metric == 0: # metric (int): Eval type. 0: bbox, 1: bev, 2: 3d.
gt_boxes = np.concatenate([a['bbox'] for a in gt_annos_part], 0) # 不会运行
dt_boxes = np.concatenate([a['bbox'] for a in dt_annos_part], 0)
overlap_part = image_box_overlap(gt_boxes, dt_boxes)
elif metric == 1: # Eval type. 1: bev================================================
loc = np.concatenate([a['location'] for a in gt_annos_part], 0) # ValueError: need at least one array to concatenate
dims = np.concatenate([a['dimensions'] for a in gt_annos_part], 0)
rots = np.concatenate([a['rotation_y'] for a in gt_annos_part], 0)
gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1) # (100, 7)
loc = np.concatenate([a['location'] for a in dt_annos_part], 0)
dims = np.concatenate([a['dimensions'] for a in dt_annos_part], 0)
rots = np.concatenate([a['rotation_y'] for a in dt_annos_part], 0)
dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
overlap_part = bev_box_overlap(gt_boxes, # rotate_iou_gpu_eval mmdet3d/core/evaluation/kitti_utils/rotate_iou.py
dt_boxes).astype(np.float64)
elif metric == 2: #: 2: 3d.=======================================================
loc = np.concatenate([a['location'] for a in gt_annos_part], 0) # ValueError: need at least one array to concatenate
dims = np.concatenate([a['dimensions'] for a in gt_annos_part], 0)
rots = np.concatenate([a['rotation_y'] for a in gt_annos_part], 0)
gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1) # (100, 7)
loc = np.concatenate([a['location'] for a in dt_annos_part], 0)
dims = np.concatenate([a['dimensions'] for a in dt_annos_part], 0)
rots = np.concatenate([a['rotation_y'] for a in dt_annos_part], 0)
dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
overlap_part = d3_box_overlap(gt_boxes,
dt_boxes).astype(np.float64) # 计算3d IOU=============================
else:
raise ValueError('unknown metric')
parted_overlaps.append(overlap_part) # append([9,9])
''' (176, 16)
[array([[0.00019199, 0. , 0. , ..., 0. , 0. ,
0. ],
[0. , 0. , 0. , ..., 0.00085803, 0. ,
0. ],
[0. , 0. , 0. , ..., 0.00768037, 0. ,
0. ],
...,
[0. , 0. , 0. , ..., 0. , 0. ,
0. ],
[0. , 0. , 0. , ..., 0. , 0. ,
0. ],
[0. , 0. , 0. , ..., 0. , 0.00692087,
0.01676498]])]
'''
example_idx += num_part
overlaps = []
example_idx = 0
for j, num_part in enumerate(split_parts):
gt_annos_part = gt_annos[example_idx:example_idx + num_part]
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
gt_num_idx, dt_num_idx = 0, 0
for i in range(num_part):
gt_box_num = total_gt_num[example_idx + i]
dt_box_num = total_dt_num[example_idx + i]
overlaps.append(
parted_overlaps[j][gt_num_idx:gt_num_idx + gt_box_num,
dt_num_idx:dt_num_idx + dt_box_num])
gt_num_idx += gt_box_num
dt_num_idx += dt_box_num
example_idx += num_part
return overlaps, parted_overlaps, total_gt_num, total_dt_num # 返回值
# 准备数据
def _prepare_data(gt_annos, dt_annos, current_class, difficulty):
# 数据初始化
gt_datas_list = []
dt_datas_list = []
total_dc_num = []
ignored_gts, ignored_dets, dontcares = [], [], [] # donecares不需要
total_num_valid_gt = 0
# 遍历每个图像gt
for i in range(len(gt_annos)):
#得到的是参数,当前帧的这个类别的 有效物体数,和有效物体的索引列表
rets = clean_data(gt_annos[i], dt_annos[i], current_class, difficulty) # 函数的调用======================================
num_valid_gt, ignored_gt, ignored_det = rets # 得到结果
# 将每一帧的ignored_gt数据类型进行转换为numpy格式,再添加到ignored_gts
ignored_gts.append(np.array(ignored_gt, dtype=np.int64))
ignored_dets.append(np.array(ignored_det, dtype=np.int64))
# #! 最终形成ignored_gts的List
# if len(dc_bboxes) == 0:
# dc_bboxes = np.zeros((0, 4)).astype(np.float64)
# #! dc_boxes 是一个np array,形状(该图像中的don't care boxes 数量, 4)
# else:
# dc_bboxes = np.stack(dc_bboxes, 0).astype(np.float64)
# #! 每一列是一个Don't Care bbox
# total_dc_num.append(dc_bboxes.shape[0])
# #! don't care boxes的数量. total_dc_num是该图像dc_boxes数量的list,每个图像对应一个total_dc_num
# dontcares.append(dc_bboxes)
#! 该图像的dc_boxes list的list
total_num_valid_gt += num_valid_gt # #! 有效 gt boxes 总数的计数器
gt_datas_num = len(gt_annos[i]["name"])
gt_datas_list.append(gt_datas_num)
#dt_datas_score = dt_annos[i]["score"]
dt_datas_score = dt_annos[i]["score"][..., np.newaxis] # KeyError: 'scores' 报错
dt_datas_list.append(dt_datas_score) #
# 返回值
return (
gt_datas_list, #存放的是 每一帧物体的个数
dt_datas_list, #存放的是每一帧 不同物体的score得分的情况,是(N,1)
ignored_gts, ignored_dets, #存在
total_num_valid_gt #有效GT总数量存在
)
# gt_datas = np.concatenate(
# [gt_annos[i]['bbox'], # #! bbox index 形状是 N x 4
# gt_annos[i]['alpha'][..., np.newaxis]], 1) #! alpha index 形状是 N -> 当np.newaxis, 是 N x 1
# #! 所以合并后成为 N x 5 ,5表示 [x1, y1, x2, y2, alpha]
# dt_datas = np.concatenate([
# dt_annos[i]['bbox'], dt_annos[i]['alpha'][..., np.newaxis],
# dt_annos[i]['score'][..., np.newaxis]
# ], 1)
# #! 类似的, 形状为N x 6, 6是 [x1, y1, x2, y2, alpha, score]
# gt_datas_list.append(gt_datas)
# dt_datas_list.append(dt_datas)
# # boxes list 的 list
# # gt_datas只和gt_annos[i]有关,dt_datas只和dt_annos[i]有关
# # 因此每个图像对应一个gt_datas_list和dt_datas_list
# total_dc_num = np.stack(total_dc_num, axis=0) # don't care boxes 数量
# '''
# 此处的所有数组的长度 = 数据集中的图像数量
# gt_datas_list:list(N x 5个数组)
# dt_datas_list:list(N x 6个数组)
# ignore_gts:list(长度为N的数组(值-1、0或1))
# ignore_dets :list(长度为N的数组(值-1、0或1))
# dontcares:list((图像x 4个数组中的无关框数量)
# total_dc_num:list(图像值中的无关框数量)
# total_num_valid_gt:有效gt的总数(int)
# '''
# return (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares,
# total_dc_num, total_num_valid_gt)
# ouster_eval-->do_eval-->eval_class
def eval_class(gt_annos,
dt_annos,
current_classes,
difficultys,
metric, # 2: 3d
min_overlaps,
compute_aos=False,
num_parts=2): # num_parts=200):
"""Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP.
Args:
gt_annos (dict): Must from get_label_annos() in kitti_common.py.
dt_annos (dict): Must from get_label_annos() in kitti_common.py.
current_classes (list[int]): 0: car, 1: pedestrian, 2: cyclist.
difficultys (list[int]): Eval difficulty, 0: easy, 1: normal, 2: hard
metric (int): Eval type. 0: bbox, 1: bev, 2: 3d ===============================================
min_overlaps (float): Min overlap. format:
[num_overlap, metric, class].
num_parts (int): A parameter for fast calculate algorithm
Returns:
dict[str, np.ndarray]: recall, precision and aos
"""
#如果验证集gt_annos中的帧数 和 从model中验证出来dt_annos帧的长度不一致,直接报错!
assert len(gt_annos) == len(dt_annos)
# 验证集中帧的总数是 num_examples:51
num_examples = len(gt_annos) # ouster:19
#得到的split_parts是一个list的类型,num_parts=5,
# 意思是将51分为5部分,经过一下函数得到的是:split_parts:[10,10,10,10,10,1]
# if num_examples < num_parts:
# num_parts = num_examples
split_parts = get_split_parts(num_examples, num_parts) # [9, 9, 1]
#计算iou
rets = calculate_iou_partly(dt_annos, gt_annos, metric, num_parts) # 1 计算iou(函数里面gt和dt互换了一下!!!)metric = 2=======================================
overlaps, parted_overlaps, total_dt_num, total_gt_num = rets #
N_SAMPLE_PTS = 41
#获取min_overlaps的各个的维度,得到的是(2, 3, 5)
# 获取当前类别的个数num_class:5,难度的个数为3
num_minoverlap = len(min_overlaps)
num_class = len(current_classes)
num_difficulty = len(difficultys)
#初始化precision,recall,aos
precision = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
recall = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
aos = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
# 每个类别
for m, current_class in enumerate(current_classes):
# 每个难度
for idx_l, difficulty in enumerate(difficultys):
rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty) # 2 准备数据==================================================
# (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, total_dc_num, total_num_valid_gt) = rets
(gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, total_num_valid_gt) = rets# ==================================
# 运行两次,首先进行中等难度的总体设置,然后进行简单设置。
for k, min_overlap in enumerate(min_overlaps[:, metric, m]):
thresholdss = [] # 初始化
for i in range(len(gt_annos)):
rets = compute_statistics_jit( # 3 计算tp, fp, fn, similarity, thresholds====================================
overlaps[i],
gt_datas_list[i], # 是一个数,表示当前帧中的物体个数 19帧 [1, 2, 3, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
dt_datas_list[i], # N x 1阵列,表示的是预测得到的N个物体的得分情况 举例: [[0.9999982 ], [0.999997 ], [0.99999654], [0.99999547], [0.99999547]]
ignored_gts[i], # 长度N数组,-1、0
ignored_dets[i], # 长度N数组,-1、0
# dontcares[i],
metric, # 0, 1, 或 2 (bbox, bev, 3d)
min_overlap=min_overlap, # 浮动最小IOU阈值为正
thresh=0.0,
compute_fp=False)
tp, fp, fn, similarity, thresholds = rets # ======================================
thresholdss += thresholds.tolist() # [-1. -1. -1. -1. -1. -1.]?????????????????
thresholdss = np.array(thresholdss)
thresholds = get_thresholds(thresholdss, total_num_valid_gt)
thresholds = np.array(thresholds)
# thresholds是 N_SAMPLE_PTS长度的一维数组,记录分数,递减,表示阈值
# 储存有关gt/dt框的信息(是否忽略,fn,tn,fp)
pr = np.zeros([len(thresholds), 4])
idx = 0
for j, num_part in enumerate(split_parts):
# gt_datas_part = np.concatenate(
# gt_datas_list[idx:idx + num_part], 0) # ValueError: zero-dimensional arrays cannot be concatenated
# dt_datas_part = np.concatenate(
# dt_datas_list[idx:idx + num_part], 0)
# # dc_datas_part = np.concatenate(
# # dontcares[idx:idx + num_part], 0)
# ignored_dets_part = np.concatenate(
# ignored_dets[idx:idx + num_part], 0)
# ignored_gts_part = np.concatenate(
# ignored_gts[idx:idx + num_part], 0)
gt_datas_part = np.array(gt_datas_list[idx:idx+num_part])
dt_datas_part = np.array(dt_datas_list[idx:idx+num_part])
ignored_dets_part = np.array(ignored_dets[idx:idx+num_part])
ignored_gts_part = np.array(ignored_gts[idx:idx+num_part])
# 再将各部分数据融合===
fused_compute_statistics( # 调用compute_statistics_jit1===================
parted_overlaps[j],
pr,
total_gt_num[idx:idx + num_part],
total_dt_num[idx:idx + num_part],
# total_dc_num[idx:idx + num_part],
gt_datas_part,
dt_datas_part,
# dc_datas_part,
ignored_gts_part,
ignored_dets_part,
metric,
min_overlap=min_overlap,
thresholds=thresholds, # 阈值
# compute_aos=compute_aos
)
idx += num_part
# #计算recall和precision
for i in range(len(thresholds)):
recall[m, idx_l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2])
precision[m, idx_l, k, i] = pr[i, 0] / (
pr[i, 0] + pr[i, 1])
if compute_aos:
aos[m, idx_l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1])
# 返回各自序列的最值
for i in range(len(thresholds)):
precision[m, idx_l, k, i] = np.max(
precision[m, idx_l, k, i:], axis=-1)
recall[m, idx_l, k, i] = np.max(
recall[m, idx_l, k, i:], axis=-1)
if compute_aos:
aos[m, idx_l, k, i] = np.max(
aos[m, idx_l, k, i:], axis=-1)
ret_dict = {
'recall': recall, # [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]
'precision': precision, # RECALLING RECALL的顺序,因此精度降低====================================
'orientation': aos,
}
# clean temp variables
del overlaps
del parted_overlaps
gc.collect()
return ret_dict # 返回
#
def get_mAP(prec):
sums = 0
for i in range(0, prec.shape[-1], 4):
sums = sums + prec[..., i]
return sums / 11 * 100
def print_str(value, *arg, sstream=None):
if sstream is None:
sstream = sysio.StringIO()
sstream.truncate(0)
sstream.seek(0)
print(value, *arg, file=sstream)
return sstream.getvalue()
# 是计算评估结果的重要函数
def do_eval(gt_annos,
dt_annos,
current_classes, # [0, 1, 2, 3, 4, 5, 6]
min_overlaps, # min_overlaps(2,3,7)//
eval_types=['3d']): # 修改 # eval_types=['bbox', 'bev', '3d']):
# min_overlaps: [num_minoverlap, metric, num_class]
difficultys = [0, 1, 2]
mAP_bbox = None
mAP_aos = None
# if 'bbox' in eval_types: # 不运行
# ret = eval_class(
# gt_annos,
# dt_annos,
# current_classes,
# difficultys,
# 0,
# min_overlaps,
# compute_aos=('aos' in eval_types))
# # ret: [num_class, num_diff, num_minoverlap, num_sample_points]
# mAP_bbox = get_mAP(ret['precision'])
# if 'aos' in eval_types:
# mAP_aos = get_mAP(ret['orientation'])
mAP_bev = None # 初始化
if 'bev' in eval_types: # 不运行
ret = eval_class(gt_annos, dt_annos, current_classes, difficultys, 1, # 1 bev
min_overlaps)
mAP_bev = get_mAP(ret['precision'])
mAP_3d = None # 初始化
# 3D的评测结果=====================================================================
if '3d' in eval_types:
ret = eval_class(gt_annos, dt_annos, current_classes, difficultys, 2, # 得到结果 eval_types =2================================
min_overlaps)
mAP_3d = get_mAP(ret['precision'])