-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_fgsm_attack.py
190 lines (171 loc) · 7.83 KB
/
test_fgsm_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import torch
import numpy as np
from utils.loss import BceDiceLoss
from sklearn.metrics import confusion_matrix
from utils.filter import normalize_image, low_pass_filter
from torch.utils.data import DataLoader, Dataset
import albumentations as A
from model.LightMed import LightMed
def parse_args():
parser = argparse.ArgumentParser(description='Test model with optional FGSM attack')
parser.add_argument('--model_paths', nargs='+', required=True, help='Paths to model files')
parser.add_argument('--test_dataset_paths', nargs='+', required=True, help='Paths to test datasets')
parser.add_argument('--attack', action='store_true', help='Perform FGSM attack')
parser.add_argument('--epsilons', nargs='+', type=float, default=[2, 4, 6, 8, 10], help='Epsilon values for FGSM attack')
parser.add_argument('--image_size', type=int, default=256, help='Image size')
parser.add_argument('--in_channels', type=int, default=3, help='Input channels')
parser.add_argument('--out_channels', type=int, default=1, help='Output channels')
parser.add_argument('--r', type=int, default=64, help='Radius for low pass filter')
parser.add_argument('--threshold', type=float, default=0.5, help='Threshold for predictions')
parser.add_argument('--device', type=str, default='cuda', help='Device to use')
return parser.parse_args()
class CustomImageMaskDataset(Dataset):
def __init__(self, images, masks, image_transform=None):
self.images = images
self.masks = masks
self.image_transform = image_transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
mask = self.masks[idx]
image = image.transpose(1, 2, 0)
mask = mask.transpose(1, 2, 0)
if self.image_transform:
aug = self.image_transform(image=image, mask=mask)
image = aug['image']
mask = aug['mask']
mask = np.where(mask > 0, 1., 0.)
image = image.transpose(2, 0, 1)
mask = mask.transpose(2, 0, 1)
return image, mask
def process_dataset(test_dataset, r):
x_test = []
y_test = []
for images, masks in test_dataset:
images = normalize_image(np.array(images))
x_test.append(np.stack(images))
y_test.append(np.stack(masks))
return np.array(x_test), np.array(y_test)
class CustomDataset(Dataset):
def __init__(self, x_data, y_data):
self.x_data = x_data
self.y_data = y_data
def __len__(self):
return len(self.x_data)
def __getitem__(self, index):
x = torch.from_numpy(self.x_data[index])
y = torch.from_numpy(self.y_data[index])
return x, y
def fgsm_attack(model, image, mask, epsilon, criterion, device):
img, msk = image.to(device).float(), mask.to(device).float()
img.requires_grad = True
out = model(img)
loss = criterion(out, msk)
model.zero_grad()
loss.backward()
data_grad = img.grad.data
sign_data_grad = data_grad.sign()
perturbed_image = img + (epsilon * 0.1 / 255) * sign_data_grad
perturbed_image = torch.clamp(perturbed_image, 0., 1.)
return perturbed_image
def test_one_epoch_attack_fgsm(test_loader, model, criterion, threshold, epsilons, device):
model.eval()
for eps in epsilons:
print(f"Testing with FGSM attack, epsilon: {eps}")
preds = []
gts = []
loss_list = []
for img, msk in test_loader:
perturbed_data = fgsm_attack(model, img, msk, eps, criterion, device)
out = model(perturbed_data)
msk = msk.squeeze(1).cpu().detach().numpy()
gts.append(msk)
if isinstance(out, tuple):
out = out[0]
out = out.squeeze(1).cpu().detach().numpy()
preds.append(out)
preds = np.concatenate(preds, axis=0).reshape(-1)
gts = np.concatenate(gts, axis=0).reshape(-1)
y_pre = np.where(preds >= threshold, 1, 0)
y_true = np.where(gts >= 0.5, 1, 0)
confusion = confusion_matrix(y_true, y_pre)
TN, FP, FN, TP = confusion.ravel()
accuracy = (TN + TP) / np.sum(confusion) if np.sum(confusion) != 0 else 0
sensitivity = TP / (TP + FN) if (TP + FN) != 0 else 0
specificity = TN / (TN + FP) if (TN + FP) != 0 else 0
f1_or_dsc = (2 * TP) / (2 * TP + FP + FN) if (2 * TP + FP + FN) != 0 else 0
f2_score = (5 * TP) / (5 * TP + 4 * FN + FP) if (5 * TP + 4 * FN + FP) != 0 else 0
miou = TP / (TP + FP + FN) if (TP + FP + FN) != 0 else 0
log_info = f'Epsilon: {eps}, miou: {miou}, f1_or_dsc: {f1_or_dsc}, f2_score: {f2_score}, ' \
f'accuracy: {accuracy}, specificity: {specificity}, sensitivity: {sensitivity}'
print(log_info)
def test_one_epoch(test_loader, model, criterion, threshold, device):
model.eval()
preds = []
gts = []
loss_list = []
with torch.no_grad():
for img, msk in test_loader:
img, msk = img.to(device).float(), msk.to(device).float()
out = model(img)
loss = criterion(out, msk)
loss_list.append(loss.item())
msk = msk.squeeze(1).cpu().numpy()
gts.append(msk)
if isinstance(out, tuple):
out = out[0]
out = out.squeeze(1).cpu().numpy()
preds.append(out)
preds = np.concatenate(preds, axis=0).reshape(-1)
gts = np.concatenate(gts, axis=0).reshape(-1)
y_pre = np.where(preds >= threshold, 1, 0)
y_true = np.where(gts >= 0.5, 1, 0)
confusion = confusion_matrix(y_true, y_pre)
TN, FP, FN, TP = confusion.ravel()
accuracy = (TN + TP) / np.sum(confusion) if np.sum(confusion) != 0 else 0
sensitivity = TP / (TP + FN) if (TP + FN) != 0 else 0
specificity = TN / (TN + FP) if (TN + FP) != 0 else 0
f1_or_dsc = (2 * TP) / (2 * TP + FP + FN) if (2 * TP + FP + FN) != 0 else 0
f2_score = (5 * TP) / (5 * TP + 4 * FN + FP) if (5 * TP + 4 * FN + FP) != 0 else 0
miou = TP / (TP + FP + FN) if (TP + FP + FN) != 0 else 0
log_info = f'loss: {np.mean(loss_list):.4f}, miou: {miou}, f1_or_dsc: {f1_or_dsc}, f2_score: {f2_score}, ' \
f'accuracy: {accuracy}, specificity: {specificity}, sensitivity: {sensitivity}'
print(log_info)
def main():
args = parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
criterion = BceDiceLoss()
model = LightMed(args.in_channels, args.out_channels).to(device)
test_transforms = A.Compose([
A.Resize(width=args.image_size, height=args.image_size, p=1.0)
])
test_datasets = []
for dataset_path in args.test_dataset_paths:
X_test = np.load(os.path.join(dataset_path, 'images_test.npy'))
y_test = np.load(os.path.join(dataset_path, 'masks_test.npy'))
test_dataset = CustomImageMaskDataset(X_test, y_test, test_transforms)
test_datasets.append(test_dataset)
processed_datasets = []
for test_dataset in test_datasets:
x_test, y_test = process_dataset(test_dataset, args.r)
processed_datasets.append((x_test, y_test))
test_dataloaders = []
for x_test, y_test in processed_datasets:
dataset = CustomDataset(x_test, y_test)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
test_dataloaders.append(dataloader)
for path in args.model_paths:
model.load_state_dict(torch.load(path))
model = model.to(device)
print(f"Testing with model from: {path}")
for scenario_idx, dataloader in enumerate(test_dataloaders):
print(f"Scenario {scenario_idx}:")
if args.attack:
test_one_epoch_attack_fgsm(dataloader, model, criterion, args.threshold, args.epsilons, device)
else:
test_one_epoch(dataloader, model, criterion, args.threshold, device)
if __name__ == '__main__':
main()