-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
62 lines (57 loc) · 1.68 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
"""The setup script."""
import os
from setuptools import setup, find_packages
from pathlib import Path
this_directory = Path(__file__).parent
readme = (this_directory / "README.md").read_text()
requirements = [
'optuna',
'scikit-learn',
'typer',
'mljar-scikit-plot',
'tokenizers',
'torch',
'transformers',
'lightgbm',
'xgboost',
'mdpdf',
'onnxmltools',
'skl2onnx',
'onnxruntime',
'hestia-ood>=0.0.34'
]
test_requirements = requirements
files = [f'autopeptideml/data/peptipedia/{file}' for file in
os.listdir('autopeptideml/data/peptipedia')]
files.append('autopeptideml/data/bioactivities.txt')
files.append('autopeptideml/data/readme_ex.md')
setup(
author="Raul Fernandez-Diaz",
author_email='[email protected]',
python_requires='>=3.9',
classifiers=[
],
description="AutoML system for building trustworthy peptide bioactivity predictors",
entry_points={
'console_scripts': [
'apml=autopeptideml.main:_build_model',
'apml-predict=autopeptideml.main:_predict',
'autopeptideml=autopeptideml.main:_build_model',
'autopeptideml-predict=autopeptideml.main:_predict',
'autopeptideml-setup=autopeptideml.data.preprocess_db:main'
],
},
install_requires=requirements,
license="MIT",
long_description=readme,
long_description_content_type='text/markdown',
data_files=[('', files)],
include_package_data=True,
keywords='autopeptideml',
name='autopeptideml',
packages=find_packages(exclude=['examples']),
url='https://ibm.github.io/AutoPeptideML/',
version='1.0.5',
zip_safe=False,
)