-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathsetup.py
158 lines (146 loc) · 4.39 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2019-2023 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from datetime import datetime
from setuptools import find_packages, setup
logger = logging.getLogger(__name__)
logger.addHandler(logging.StreamHandler())
try:
import builtins
# This trick is borrowed from scikit-learn
# This is a bit (!) hackish: we are setting a global variable so that the
# main lale __init__ can detect if it is being loaded by the setup
# routine, to avoid attempting to import components before installation.
builtins.__LALE_SETUP__ = True # type: ignore
except ImportError:
pass
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
on_rtd = os.environ.get("READTHEDOCS") == "True"
if on_rtd:
install_requires = []
else:
install_requires = [
"numpy",
"black>=22.1.0",
"graphviz",
"hyperopt>=0.2,<=0.2.7",
"jsonschema<=4.20.0",
"jsonsubschema>=0.0.6",
"scikit-learn>=1.0.0,<1.5.0",
"scipy",
"pandas",
"packaging",
"decorator",
"astunparse",
"typing-extensions",
]
import lale # noqa: E402 # pylint:disable=wrong-import-position
if "TRAVIS" in os.environ:
now = datetime.now().strftime("%y%m%d%H%M")
VERSION = f"{lale.__version__}-{now}"
else:
VERSION = lale.__version__
extras_require = {
"full": [
"mystic",
"xgboost<2.1.0",
"lightgbm<4.4.0",
"snapml>=1.7.0rc3,<1.16.0",
"liac-arff>=2.4.0",
"tensorflow>=2.4.0,<=2.16.0",
"smac<=0.10.0",
"numba",
"aif360>=0.5.0",
"torch>=1.0",
"BlackBoxAuditing",
"imbalanced-learn",
"cvxpy>=1.0",
"fairlearn",
"h5py",
],
"dev": ["pre-commit"],
"test": [
"mystic",
"joblib",
"ipython<8.8.0",
"jupyter",
"lxml<5.2.0",
"sphinx>=5.0.0",
"sphinx_rtd_theme>=0.5.2",
"docutils<0.17",
"m2r2",
"sphinxcontrib.apidoc",
"sphinxcontrib-svg2pdfconverter",
"pytest",
"pyspark",
"func_timeout",
"category-encoders",
"pynisher==0.6.4",
],
"fairness": [
"mystic",
"liac-arff>=2.4.0",
"aif360>=0.5.0",
"imbalanced-learn",
"BlackBoxAuditing",
],
"tutorial": [
"ipython<8.8.0",
"jupyter",
"xgboost<=1.5.1",
"imbalanced-learn",
"liac-arff>=2.4.0",
"aif360>=0.5.0",
"BlackBoxAuditing",
"typing-extensions",
"pandas<2.0.0",
],
}
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
]
setup(
name="lale",
version=VERSION,
author="Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham Shinnar",
description="Library for Semi-Automated Data Science",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/IBM/lale",
python_requires=">=3.8",
package_data={"lale": ["py.typed"]},
packages=find_packages(),
license="Apache License 2.0",
classifiers=classifiers,
install_requires=install_requires,
extras_require=extras_require,
)