diff --git a/standard_plots/sfr_mstars_panel.py b/standard_plots/sfr_mstars_panel.py new file mode 100644 index 0000000..d165c44 --- /dev/null +++ b/standard_plots/sfr_mstars_panel.py @@ -0,0 +1,286 @@ +# +# ICRAR - International Centre for Radio Astronomy Research +# (c) UWA - The University of Western Australia, 2018 +# Copyright by UWA (in the framework of the ICRAR) +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . +# +"""SMF plots""" + +import collections +import functools +import logging +import math + +import numpy as np + +import common +import utilities_statistics as us + +import matplotlib.gridspec as gridspec +import matplotlib.patheffects as pe +from astropy.cosmology import FlatLambdaCDM + + +observation = collections.namedtuple('observation', 'label x y yerrup yerrdn err_absolute') + +logger = logging.getLogger(__name__) + +################################## +# Constants +GyrToYr = 1e9 +Zsun = 0.0127 +XH = 0.72 +MpcToKpc = 1e3 + +################################## +# Mass function initialization +mlow = 5 +mupp = 14 +dm = 0.125 +mbins = np.arange(mlow,mupp,dm) +xmf = mbins + dm/2.0 +imf = 'cha' + +mlow2 = 5 +mupp2 = 14 +dm2 = 0.3 +mbins2 = np.arange(mlow2,mupp2,dm2) +xmf2 = mbins2 + dm2/2.0 + +mlow3 = 5 +mupp3 = 14 +dm3 = 0.2 +mbins3 = np.arange(mlow3,mupp3,dm3) +xmf3 = mbins3 + dm3/2.0 + +ssfrlow = -6 +ssfrupp = 4 +dssfr = 0.2 +ssfrbins = np.arange(ssfrlow,ssfrupp,dssfr) +xssfr = ssfrbins + dssfr/2.0 + +sfrlow = -3 +sfrupp = 1.5 +dsfr = 0.2 +sfrbins = np.arange(sfrlow,sfrupp,dsfr) +xsfr = sfrbins + dsfr/2.0 + +# plotting options +size1 = 27 +size2 = 9 +stext = 40 +fsize = 21 +saxis = 27 +linw1 = 6 +linw2 = 2 +linw3 = 30 +linw4 = 35 +spad = 15 +spadx = 8 +spady = 8 +col = 'dodgerblue' + +# SFMS fits +logMstars = np.linspace(8.5,11.5,20) + +def sfms_fit_popesso23(t): + # Popesso+23: fit to the SFMS at different redhifts z=0-6 + # (compilation of different literature studies) + # fit in the stellar mass range (10^8.5-10^11.5Msun) + # t is the age of the Universe in Gyr + logMstars = np.linspace(8.5,11.5,20) + a0 = 0.20 + a1 = -0.034 + b0 = -26.134 + b1 = 4.722 + b2 = -0.1925 + return (a1*t + b1)*logMstars + b2*(logMstars)**2 + (b0 + a0*t) + +def sfms_fit_schreiber15(m,z): + # Schreiber+15: fit to the SFMS at different redhifts + # fit in the stellar mass range (10^8.5-10^11.5Msun) + # z is redshift + r = np.log10(1 + z) + m = np.log10(m/1e9) + m0 = 0.5 + a0 = 1.5 + a1 = 0.3 + m1 = 0.36 + a2 = 2.5 + return m - m0 + a0*r - a1*(np.maximum.reduce([np.zeros(np.shape(m)),m - m1 - a2*r]))**2 + +def setup_subplot(ax, xmin, xmax, ymin, ymax, xtit, ytit, show_yticks=True): + common.prepare_ax(ax, xmin, xmax, ymin, ymax, xtit, ytit, locators=(0.1, 1, 0.1, 1)) + ax.set_xlim(xmin,xmax) + ax.set_ylim(ymin,ymax) + ax.set_xticks(np.arange(8,13,1)) + ax.set_xticks(np.arange(8,13,0.2),minor=True) + ax.set_xlabel(xtit,fontsize=linw3,labelpad=spadx) + if show_yticks: + ax.set_yticks(np.arange(-3,4,1)) + ax.set_ylabel(ytit,fontsize=linw3,labelpad=spady) + else: + ax.set_yticks(np.arange(-3,4,1),[]) + ax.set_yticks(np.arange(-3,3.4,0.2),[],minor=True) + ax.tick_params(axis='both', which='major', labelsize=saxis) + +def plot_sfms(plt, outdir, h0, omega_m, omega_b, obsdir, mainseqsf_1): + + cosmo = FlatLambdaCDM(H0=h0*100, Om0=omega_m, Ob0=omega_b) + LBT_end = cosmo.lookback_time(1e10).value + LBT_0 = cosmo.lookback_time(0).value + LBT_1 = cosmo.lookback_time(1).value + LBT_2 = cosmo.lookback_time(2).value + + fig = plt.figure(figsize=(size1,size2)) + gs = gridspec.GridSpec(1, 3, height_ratios=[1], width_ratios=[1,1,1]) + gs.update(wspace=0, hspace=0) + + xtit="$\\rm log_{10} (\\rm M_{\\star}/M_{\odot})$" + ytit="$\\rm log_{10}(\\rm SFR/M_{\odot} yr^{-1})$" + ytit2=r'$\mathrm{log}_{10}\ \frac{\mathrm{SFR_{\mathrm{after}}}}{\mathrm{SFR}_{\mathrm{before}}}$' + xmin, xmax, ymin, ymax = 8, 12.5, -3.3, 3.3 + ymin2, ymax2 = -3, 3 + xleg = xmax - 0.9 * (xmax-xmin) + yleg = ymax - 0.5 * (ymax-ymin) + + ax = plt.subplot(gs[0]) + setup_subplot(ax, xmin, xmax, ymin, ymax, xtit, ytit) + + index = 0 + ind = np.where(mainseqsf_1[index,0,:] != 0) + yp = mainseqsf_1[index,0,ind] + ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind] + yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind] + ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True) + ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()]) + + ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_0),color='orange',linestyle='dashed', linewidth = 5, label="Popesso+23 MS fit") + + #GAMA data at z<0.06 + #CATAID StellarMass_bestfit StellarMass_50 StellarMass_16 StellarMass_84 SFR_bestfit SFR_50 SFR_16 SFR_84 Zgas_bestfit Zgas_50 Zgas_16 Zgas_84 DustMass_bestfit DustMass_50 DustMass_16 DustMass_84 DustLum_50 DustLum_16 DustLum_84 uberID redshift + ms_gama, sfr_gama = common.load_observation(obsdir, 'GAMA/ProSpect_Claudia.txt', [2,6]) + ind = np.where(sfr_gama < 1e-3) + sfr_gama[ind] = 1e-3 + #ax.hexbin(np.log10(ms_gama), np.log10(sfr_gama), gridsize=(20,20), mincnt=5) #, cmap = 'plasma') #, **contour_kwargs) + #us.density_contour_reduced(ax, np.log10(ms_gama), np.log10(sfr_gama), 25, 25) #, **contour_kwargs) + + bin_it = functools.partial(us.wmedians, xbins=xmf, nmin=10) + toplot = bin_it(x=np.log10(ms_gama), y=np.log10(sfr_gama)) + ind = np.where(toplot[0,:] != 0) + yp = toplot[0,ind] + yup = toplot[2,ind] + toplot[0,ind] + ydn = toplot[0,ind] - toplot[1,ind] + ax.fill_between(xmf[ind], ydn[0], yup[0], color='Maroon', alpha = 0.1, linestyle='solid', linewidth = 2) + ax.plot(xmf[ind], yp[0],color='Maroon',linestyle='dashed', linewidth = 5, label="Bellstedt+20") + + # individual massive galaxies from Terrazas+17 + ms, sfr, upperlimflag = common.load_observation(obsdir, 'BHs/MBH_host_gals_Terrazas17.dat', [0,1,2]) + ind = np.where(ms > 11.3) + ax.errorbar(ms[ind], sfr[ind], xerr=0.2, yerr=0.3, ls='None', mfc='None', ecolor = 'r', mec='r',marker='s',label="Terrazas+17",markersize=8,elinewidth=2) + ind = np.where((upperlimflag == 1) & (ms > 11.3)) + for a,b in zip (ms[ind], sfr[ind]): + ax.arrow(a, b, 0, -0.3, head_width=0.05, head_length=0.1, fc='r', ec='r') + + + ax.text(xleg,yleg, 'z=0' ,fontsize=stext) + # Legend + plt.tight_layout() + ax.legend(loc=2, prop={'size': fsize}, frameon=False) + + yleg = ymax - 0.25 * (ymax-ymin) + + ax = plt.subplot(gs[1]) + setup_subplot(ax, xmin, xmax, ymin, ymax, xtit, '', show_yticks=False) + index = 1 + ind = np.where(mainseqsf_1[index,0,:] != 0) + yp = mainseqsf_1[index,0,ind] + ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind] + yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind] + ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True) + ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()]) + ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_1),color='orange',linestyle='dashed', linewidth = 5) + mstars = np.logspace(8,13,100) + #ax.plot(np.log10(mstars),sfms_fit_schreiber15(mstars,1),color='olive',linestyle='dashed', linewidth = 5, label="Schreiber+15 MS fit") + ax.text(xleg,yleg, 'z=1' ,fontsize=stext) + # Legend + plt.tight_layout() + ax.legend(loc=2, prop={'size': fsize}, frameon=False) + + yleg = ymax - 0.25 * (ymax-ymin) + + ax = plt.subplot(gs[2]) + setup_subplot(ax, xmin, xmax, ymin, ymax, xtit, '', show_yticks=False) + index = 2 + ind = np.where(mainseqsf_1[index,0,:] != 0) + yp = mainseqsf_1[index,0,ind] + ydn = mainseqsf_1[index,0,ind] - mainseqsf_1[index,1,ind] + yup = mainseqsf_1[index,2,ind] + mainseqsf_1[index,0,ind] + ax.fill_between(xmf[ind], ydn[0], yup[0], color=col, alpha = 0.25, linestyle='solid', linewidth = 3, interpolate=True) + ax.plot(xmf[ind], yp[0],color=col,linestyle='solid', linewidth = linw1, label="Shark before", path_effects=[pe.Stroke(linewidth=linw1+1, foreground='k'), pe.Normal()]) + ax.plot(logMstars,sfms_fit_popesso23(LBT_end-LBT_2),color='orange',linestyle='dashed', linewidth = 5, label="Popesso+23") + #ax.plot(np.log10(mstars),sfms_fit_schreiber15(mstars,2),color='olive',linestyle='dashed', linewidth = 5, label="Schreiber+15") + ax.text(xleg,yleg, 'z=2' ,fontsize=stext) + # Legend + plt.tight_layout() + + common.savefig(outdir, fig, 'SFR_Mstars_plot_panel.pdf') + + +def prepare_data(hdf5_data, index, mainseqsf): + + (h0, volh, sfr_disk, sfr_burst, mdisk, mbulge) = hdf5_data + + bin_it_2sigma = functools.partial(us.wmedians_2sigma, xbins=xmf) + + mass = np.zeros(shape = len(mdisk)) + ind = np.where((mdisk+mbulge) > 0.0) + mass[ind] = np.log10(mdisk[ind] + mbulge[ind]) - np.log10(float(h0)) + logger.debug('number of galaxies with mstars>0 and max mass: %d, %d', len(mass[ind]), max(mass[ind])) + + ind = np.where((sfr_disk+sfr_burst > 0) & (mdisk+mbulge > 0) & ((sfr_disk+sfr_burst)/(mdisk+mbulge) > 0)) + mainseqsf[index,:] = bin_it_2sigma(x=mass[ind], y=np.log10((sfr_disk[ind]+sfr_burst[ind])/h0/GyrToYr)) + + return mass + +def main(modeldir, outdir, redshift_table, subvols, obsdir): + + model = modeldir.split('/')[-1] + sim = modeldir.split('/')[-2] + + zlist = (0, 0.5, 1, 2, 3, 4) + + plt = common.load_matplotlib() + + mainseqsf = np.zeros(shape = (len(zlist), 3, len(xmf))) + + fields = {'galaxies': ('sfr_disk', 'sfr_burst', 'mstars_disk', 'mstars_bulge')} + fields_c = {'cosmology': ('omega_m', 'omega_b')} + + for index, snapshot in enumerate(redshift_table[zlist]): + hdf5_data = common.read_data(modeldir, snapshot, fields, subvols) + mass = prepare_data(hdf5_data, index, mainseqsf) + + subvol = set() + subvol.add(0) + hdf5_data = common.read_data(modeldir, redshift_table[zlist[0]], fields_c, subvol) + (h0, volh, omega_m, omega_b) = hdf5_data + + plot_sfms(plt, outdir, h0, omega_m, omega_b, obsdir, mainseqsf) + + + +if __name__ == '__main__': + main(*common.parse_args())