-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathalign_session_one_all.py
46 lines (36 loc) · 1.51 KB
/
align_session_one_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# import the necessary packages
import pandas as pd
import argparse
import os
# create argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
help="path to dataset")
ap.add_argument("-s", "--split", required = True,
help="name the split train/valid/test")
ap.add_argument("-i", "--sub_range", nargs='+', type=int, default = (0,0),
help="range of subjects")
args = vars(ap.parse_args())
# initialize the set name
set_name = args["split"]
# construct a path to the dataset
dataset_path = os.path.join(args["dataset"], set_name)
# construct the filename based on the set name
alignment_filepath = "metadata/session_1/alignment_info_{}.csv".format(set_name)
# read the alignment info to the Pandas table
alignment_data = pd.read_csv(alignment_filepath)
# initialize the starting and ending subjects IDs
sub_id_str = args["sub_range"][0] - 1
sub_id_end = args["sub_range"][1] - 1
# loop over the subjects
for i in range(sub_id_str * 2, sub_id_end * 2):
# extract shifts for x and y axis
# for the given subject
dx_str = alignment_data.iloc[i].dx
dy_str = alignment_data.iloc[i].dy
print(dy_str, dx_str)
# can be anything lets set the pos_id to 1
sub_info = "{} {} 1".format(alignment_data.iloc[i].sub_id, alignment_data.iloc[i].trial_id)
final_command = 'python align_session_one.py --dataset {} --dy {} --dx {} --sub_info {}'.format(dataset_path, dy_str, dx_str, sub_info)
print(final_command)
os.system(final_command)