-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
237 lines (184 loc) · 11 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import sys
import yaml
from argparse import ArgumentParser
from tqdm.auto import tqdm
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
import ffmpeg
import os
from os.path import splitext
from shutil import copyfileobj
from tempfile import NamedTemporaryFile
from scipy.spatial import ConvexHull
from srt.checkpoint import Checkpoint
from srt.utils.visualize import draw_image_with_kp
from modules.keypoint_detector import KPDetector
from modules.expression_encoder import ExpressionEncoder
from srt.model import FSRT
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source.data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial[0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = kp_driving
if use_relative_movement:
kp_value_diff = (kp_driving - kp_driving_initial)
kp_value_diff *= adapt_movement_scale
kp_new = kp_value_diff + kp_source
return kp_new
def extract_keypoints_and_expression(img, model, kp_detector, cfg, src = False):
assert kp_detector is not None
bs, c, h, w = img.shape
nkp = kp_detector.num_kp
with torch.no_grad():
kps, latent_dict = kp_detector(img)
heatmaps = latent_dict['heatmap'].view(bs,nkp,latent_dict['heatmap'].shape[-2],latent_dict['heatmap'].shape[-1])
feature_maps = latent_dict['feature_map'].view(bs,latent_dict['feature_map'].shape[-3],latent_dict['feature_map'].shape[-2],latent_dict['feature_map'].shape[-1])
if kps.shape[1] == 1:
kps = kps.squeeze(1)
expression_vector = model.expression_encoder(feature_maps,heatmaps)
if src:
expression_vector = expression_vector[None]
return kps, expression_vector
def forward_model(model, expression_vector_src, keypoints_src, expression_vector_driv, keypoints_driv, img_src, idx_grids, cfg, max_num_pixels, z=None):
render_kwargs = cfg['model']['decoder_kwargs']
if len(img_src.shape) < 5:
img_src = img_src.unsqueeze(1)
if len(keypoints_src.shape) < 4:
keypoints_src = keypoints_src.unsqueeze(1)
if z is None:
z = model.encoder(img_src, keypoints_src, idx_grids[:,:1].repeat(1,img_src.shape[1],1,1,1), expression_vector=expression_vector_src)
target_pos = idx_grids[:,1]
target_kps = keypoints_driv
_, height, width = target_pos.shape[:3]
target_pos = target_pos.flatten(1, 2)
target_kps = target_kps.unsqueeze(1).repeat(1, target_pos.shape[1], 1,1)
num_pixels = target_pos.shape[1]
img = torch.zeros((target_pos.shape[0],target_pos.shape[1],3))
for i in range(0, num_pixels, max_num_pixels):
img[:, i:i+max_num_pixels], extras = model.decoder(
z.clone(), target_pos[:, i:i+max_num_pixels], target_kps[:, i:i+max_num_pixels], expression_vector=expression_vector_driv)
return img.view(img.shape[0], height, width, 3), z
def make_animation(source_image, driving_video, model, kp_detector, cfg, max_num_pixels, relative=False, adapt_movement_scale=False):
_, y, x = np.meshgrid(np.zeros(2), np.arange(source_image.shape[-3]), np.arange(source_image.shape[-2]), indexing="ij")
idx_grids = np.stack([x, y], axis=-1).astype(np.float32)
# Normalize
idx_grids[..., 0] = (idx_grids[..., 0] + 0.5 - ((source_image.shape[-3]) / 2.0)) / ((source_image.shape[-3]) / 2.0)
idx_grids[..., 1] = (idx_grids[..., 1] + 0.5 - ((source_image.shape[-2]) / 2.0)) / ((source_image.shape[-2]) / 2.0)
idx_grids = torch.from_numpy(idx_grids).cuda().unsqueeze(0)
z = None
with torch.no_grad():
predictions = []
source = torch.tensor(source_image.astype(np.float32)).permute(0, 3, 1, 2).cuda()
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
kp_source, expression_vector_src = extract_keypoints_and_expression(source.clone(), model, kp_detector, cfg, src=True)
kp_driving_initial, _ = extract_keypoints_and_expression(driving[:, :, 0].cuda().clone(), model, kp_detector, cfg)
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx].cuda()
kp_driving, expression_vector_driv = extract_keypoints_and_expression(driving_frame.clone(), model, kp_detector, cfg)
kp_norm = normalize_kp(kp_source=kp_source[0], kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
adapt_movement_scale=adapt_movement_scale)
out, z = forward_model(model, expression_vector_src, kp_source, expression_vector_driv, kp_norm, source.unsqueeze(0), idx_grids, cfg, max_num_pixels, z=z)
predictions.append(torch.clamp(out[0], 0., 1.).cpu())
return predictions
def find_best_frame(source, driving, cpu=False):
import face_alignment
from scipy.spatial import ConvexHull
def normalize_kp(kp):
kp = kp - kp.mean(axis=0, keepdims=True)
area = ConvexHull(kp[:, :2]).volume
area = np.sqrt(area)
kp[:, :2] = kp[:, :2] / area
return kp
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True,
device='cpu' if cpu else 'cuda')
kp_source = fa.get_landmarks(255 * source[0])[0]
kp_source = normalize_kp(kp_source)
norm = float('inf')
frame_num = 0
for i, image in tqdm(enumerate(driving)):
kp_driving = fa.get_landmarks(255 * image)[0]
kp_driving = normalize_kp(kp_driving)
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
if new_norm < norm:
norm = new_norm
frame_num = i
return frame_num
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--checkpoint", default="./checkpoints/vox256.pt", help="path to checkpoint to restore")
parser.add_argument("--source_images", nargs='+', required=True, help="paths to source images")
parser.add_argument("--driving_video", default='driving.mp4', help="path to driving video")
parser.add_argument("--result_video", default='result.mp4', help="path to output")
parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
parser.add_argument("--absolute", action="store_true", help="Use absolute motion transfer")
parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")
parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true",
help="Generate from the frame that is the most aligned with source. (requires face_alignment lib)")
parser.add_argument("--best_frame", dest="best_frame", type=int, default=None, help="Set frame to start from.")
parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode (only for FaceAlignment keypoint extraction).")
parser.add_argument("--audio", action="store_true", help="copy audio to output from the driving video", default=True)
parser.add_argument("--max_num_pixels", default=32768, help="number of parallel processed pixels. Reduce this value if you run out of GPU memory!")
parser.set_defaults(relative=False)
parser.set_defaults(adapt_scale=False)
parser.set_defaults(audio_on=False)
opt = parser.parse_args()
source_images = [imageio.imread(img_path) for img_path in opt.source_images]
reader = imageio.get_reader(opt.driving_video)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
with open(opt.config, 'r') as f:
cfg = yaml.load(f, Loader=yaml.CLoader)
kp_detector = KPDetector().cuda()
kp_detector.load_state_dict(torch.load('./checkpoints/kp_detector.pt'))
expression_encoder = ExpressionEncoder(expression_size=cfg['model']['expression_size'], in_channels=kp_detector.predictor.out_filters)
model = FSRT(cfg['model'], expression_encoder=expression_encoder).cuda()
model.eval()
kp_detector.eval()
encoder_module = model.encoder
decoder_module = model.decoder
expression_encoder_module = model.expression_encoder
source_images = [resize(img, (256, 256))[..., :3] for img in source_images]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
source_images = np.array(source_images)
# Load the checkpoints
checkpoint = Checkpoint('./', device='cuda:0', encoder=encoder_module,
decoder=decoder_module, expression_encoder=expression_encoder_module)
load_dict = checkpoint.load(opt.checkpoint)
if opt.find_best_frame or opt.best_frame is not None:
i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_images, driving_video, cpu=opt.cpu)
print("Best frame: " + str(i))
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
predictions_forward = make_animation(source_images, driving_forward, model, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cfg=cfg, max_num_pixels=opt.max_num_pixels)
predictions_backward = make_animation(source_images, driving_backward, model, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cfg=cfg, max_num_pixels=opt.max_num_pixels)
predictions = predictions_backward[::-1] + predictions_forward[1:]
else:
predictions = make_animation(source_images, driving_video, model, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cfg=cfg, max_num_pixels=opt.max_num_pixels)
# Save the animation to a temporary video file
result_video_temp = "temp_" + opt.result_video
imageio.mimsave(result_video_temp, [img_as_ubyte(frame) for frame in predictions], fps=fps)
if opt.audio:
# Combine the temporary video and the audio from the driving video
video_input = ffmpeg.input(result_video_temp)
audio_input = ffmpeg.input(opt.driving_video)
ffmpeg.output(video_input.video, audio_input.audio, opt.result_video, vcodec='copy', acodec='aac', audio_bitrate='192k', strict='experimental').global_args('-y').run()
else:
# If no audio, just save the temporary video as the final result
os.rename(result_video_temp, opt.result_video)