-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem.c
401 lines (304 loc) · 9.64 KB
/
mem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include "mem.h"
#include "../drivers/screen.h"
#include "linkedlist.h"
#include "meta.h"
#include "string.h"
////////// Utilities //////////
void memory_copy(uint8_t *source, uint8_t *dest, size_t nbytes) {
for (int i = 0; i < nbytes; i++) {
*(dest + i) = *(source + i);
}
}
void memory_set(uint8_t *dest, uint8_t val, uint32_t len) {
uint8_t *temp = (uint8_t *)dest;
for (; len != 0; len--)
*temp++ = val;
}
////////// Naive Allocator //////////
size_t kmalloc_naive(size_t size, bool align, size_t *phys_addr) {
static size_t free_mem_addr = 0x1000;
if (align && (free_mem_addr & 0xFFF)) {
free_mem_addr &= 0xFFFFF000;
free_mem_addr += 0x1000;
}
if (phys_addr)
*phys_addr = free_mem_addr;
size_t ret = free_mem_addr;
free_mem_addr += size;
return ret;
}
///////// Linked List Implementation //////////
memorynode *create_node(size_t address, size_t size) {
memorynode *new_node = (memorynode *)kmalloc_naive(sizeof(memorynode), false, NULL);
new_node->address = address;
new_node->size = size;
new_node->prev = new_node->next = NULL;
return new_node;
}
memorynode *insert_after(memorynode *head, memorynode *new) {
if (head->next != NULL) {
new->next = head->next;
new->next->prev = new;
}
head->next = new;
new->prev = head;
return head;
}
memorynode *insert_before(memorynode *head, memorynode *new) {
if (head->prev != NULL) {
new->prev = head->prev;
new->prev->next = new;
}
head->prev = new;
new->next = head;
return new;
}
memorynode *find(memorynode *list, size_t address) {
memorynode *current = list;
while (current != NULL && current->address != address) {
current = current->next;
}
return current;
}
static memorynode *head(memorynode *list) {
if (list == NULL)
return NULL;
memorynode *current = list;
while (current->prev != NULL)
current = current->prev;
return current;
}
static memorynode *tail(memorynode *list) {
if (list == NULL)
return NULL;
memorynode *current = list;
while (current->next != NULL)
current = current->next;
return current;
}
memorynode *delete_by_address(memorynode *list, size_t address) {
memorynode *target = find(list, address);
if (target == NULL)
return list;
if (target->prev != NULL)
target->prev->next = target->next;
if (target->next != NULL)
target->next->prev = target->prev;
if (target->prev == NULL)
return target->next;
else
return list;
}
memorynode *insert_by_address(memorynode *sorted, memorynode *new_node) {
if (sorted == NULL) {
new_node->prev = new_node->next = NULL;
return new_node;
} else if (sorted->address >= new_node->address) {
return insert_before(sorted, new_node);
} else {
memorynode *current = sorted;
while (current->next != NULL && current->next->address < new_node->address) {
current = current->next;
}
insert_after(current, new_node);
return sorted;
}
}
memorynode *sort_by_address(memorynode *list) {
// Implemented via insertion sort
memorynode *sorted = NULL;
memorynode *current = list;
memorynode *next = NULL;
while (current != NULL) {
next = current->next;
sorted = insert_by_address(sorted, current);
current = next;
}
return sorted;
}
#define IFASCENDING(left, op, right) ((ascending && left op right) || right op left)
memorynode *insert_by_size(memorynode *sorted, memorynode *new_node, bool ascending) {
if (sorted == NULL) {
new_node->prev = new_node->next = NULL;
return new_node;
} else if IFASCENDING (sorted->size, >=, new_node->size) {
return insert_before(sorted, new_node);
} else {
memorynode *current = sorted;
while (current->next != NULL && IFASCENDING(current->next->size, <, new_node->size)) {
current = current->next;
}
insert_after(current, new_node);
return sorted;
}
}
#undef IFASCENDING
memorynode *sort_by_size(memorynode *list, bool ascending) {
// Implemented via insertion sort
memorynode *sorted = NULL;
memorynode *current = list;
memorynode *next = NULL;
while (current != NULL) {
next = current->next;
sorted = insert_by_size(sorted, current, ascending);
current = next;
}
return sorted;
}
memorynode *add_new(memorynode *list, size_t address, size_t size) {
return insert_by_address(list, create_node(address, size));
}
void resize(memorynode *list, size_t address, size_t size) {
memorynode *target = find(list, address);
if (target != NULL)
target->size = size;
}
size_t length(memorynode *list) {
int length = 0;
memorynode *current = list;
while (current != NULL) {
length++;
current = current->next;
}
return length;
}
memorynode *clone_list(memorynode *list) {
memorynode *new_list;
memorynode *current = list;
while (current != NULL) {
new_list = add_new(new_list, current->address, current->size);
current = current->next;
}
return new_list;
}
///////// alloc implementation //////////
static memorynode *allocated = NULL;
static memorynode *free = NULL;
void merge_with_next(memorynode *selected) {
if (selected == NULL || selected->next == NULL)
return;
if ((selected->address + selected->size) == selected->next->address) {
selected->size += selected->next->size;
selected->next = selected->next->next;
if (selected->next != NULL)
selected->next->prev = selected;
}
}
void merge_free() {
memorynode *current = free;
while (current != NULL) {
memorynode *pre_merge_next = current->next;
merge_with_next(current);
if (current->next == pre_merge_next)
current = current->next;
}
}
const size_t FREE_MEM_START = 0x10000;
const size_t FREE_MEM_END = 0x40000;
const bool ALIGN = true;
const size_t ALIGN_SIZE = 0x1000;
const enum FitType FIT_TYPE = BEST;
void init_memory() {
free = create_node(FREE_MEM_START, FREE_MEM_END - FREE_MEM_START);
}
size_t kmalloc(size_t size) {
if (ALIGN && (size % ALIGN_SIZE != 0)) {
size += ALIGN_SIZE - (size % ALIGN_SIZE);
}
memorynode *free_target;
memorynode *current;
switch (FIT_TYPE) {
case FIRST:
free_target = free;
break;
case BEST:
free = sort_by_size(free, true);
current = free;
while (current != NULL && current->size < size) {
current = current->next;
}
if (current == NULL)
return (size_t)NULL;
free_target = current;
break;
case WORST:
free = sort_by_size(free, false);
if (free->size < size)
return (size_t)NULL;
free_target = free;
break;
}
size_t address = free_target->address;
// Allocate the memory
allocated = add_new(allocated, address, size);
if (free_target->size == size)
free = delete_by_address(free, address);
else {
free_target->address += size;
free_target->size -= size;
}
free = sort_by_address(free);
return address;
}
size_t kcalloc(size_t n, size_t size) {
return kmalloc(n * size);
}
size_t krealloc(size_t address, size_t size);
void kfree(size_t address) {
memorynode *target = find(allocated, address);
if (target == NULL)
return;
allocated = delete_by_address(allocated, address);
free = add_new(free, address, target->size);
merge_free();
}
memory_info mem_info() {
int free_total = 0;
memorynode *current = free;
while (current != NULL) {
free_total += current->size;
current = current->next;
}
int allocated_total = 0;
current = allocated;
while (current != NULL) {
allocated_total += current->size;
current = current->next;
}
memory_info result = {
.physical = (FREE_MEM_END - FREE_MEM_START),
.free = free_total,
.allocated = allocated_total,
.allocations = length(allocated),
.gaps = length(free),
.start = FREE_MEM_START,
.end = FREE_MEM_END - 1,
};
return result;
}
void print_memory() {
memory_info info = mem_info();
kprintlnf("Total Physical Memory: {i}kb", info.physical / 1024);
kprintlnf("Total Free: {i}kb", info.free / 1024);
kprintlnf("Total Allocated: {i}kb", info.allocated / 1024);
kprintlnf("Number of allocations: {i}", info.allocations);
kprintlnf("Number of free gaps: {i}", info.gaps);
kprintlnf("Start of Memory: {x}", info.start);
kprintlnf("End of Memory: {x}", info.end);
}
void memory_map() {
kprintln("Memory Map:");
memorynode *current_allocated = allocated;
memorynode *current_free = free;
while (current_allocated != NULL || current_free != NULL) {
if (current_free == NULL || current_allocated->address < current_free->address) {
kprintlnf("{x} - {x} Allocated region of {i}kb", current_allocated->address,
current_allocated->address + current_allocated->size - 1, current_allocated->size / 1024);
NEXT(current_allocated);
} else if (current_allocated == NULL || current_free->address < current_allocated->address) {
kprintlnf("{x} - {x} Free region of {i}kb", current_free->address,
current_free->address + current_free->size - 1, current_free->size / 1024);
NEXT(current_free);
}
}
}