forked from beevik/etree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.go
275 lines (245 loc) · 5.6 KB
/
helpers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2015-2019 Brett Vickers.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package etree
import (
"io"
"strings"
"unicode/utf8"
)
// A simple stack
type stack struct {
data []interface{}
}
func (s *stack) empty() bool {
return len(s.data) == 0
}
func (s *stack) push(value interface{}) {
s.data = append(s.data, value)
}
func (s *stack) pop() interface{} {
value := s.data[len(s.data)-1]
s.data[len(s.data)-1] = nil
s.data = s.data[:len(s.data)-1]
return value
}
func (s *stack) peek() interface{} {
return s.data[len(s.data)-1]
}
// A fifo is a simple first-in-first-out queue.
type fifo struct {
data []interface{}
head, tail int
}
func (f *fifo) add(value interface{}) {
if f.len()+1 >= len(f.data) {
f.grow()
}
f.data[f.tail] = value
if f.tail++; f.tail == len(f.data) {
f.tail = 0
}
}
func (f *fifo) remove() interface{} {
value := f.data[f.head]
f.data[f.head] = nil
if f.head++; f.head == len(f.data) {
f.head = 0
}
return value
}
func (f *fifo) len() int {
if f.tail >= f.head {
return f.tail - f.head
}
return len(f.data) - f.head + f.tail
}
func (f *fifo) grow() {
c := len(f.data) * 2
if c == 0 {
c = 4
}
buf, count := make([]interface{}, c), f.len()
if f.tail >= f.head {
copy(buf[0:count], f.data[f.head:f.tail])
} else {
hindex := len(f.data) - f.head
copy(buf[0:hindex], f.data[f.head:])
copy(buf[hindex:count], f.data[:f.tail])
}
f.data, f.head, f.tail = buf, 0, count
}
// countReader implements a proxy reader that counts the number of
// bytes read from its encapsulated reader.
type countReader struct {
r io.Reader
bytes int64
}
func newCountReader(r io.Reader) *countReader {
return &countReader{r: r}
}
func (cr *countReader) Read(p []byte) (n int, err error) {
b, err := cr.r.Read(p)
cr.bytes += int64(b)
return b, err
}
// countWriter implements a proxy writer that counts the number of
// bytes written by its encapsulated writer.
type countWriter struct {
w io.Writer
bytes int64
}
func newCountWriter(w io.Writer) *countWriter {
return &countWriter{w: w}
}
func (cw *countWriter) Write(p []byte) (n int, err error) {
b, err := cw.w.Write(p)
cw.bytes += int64(b)
return b, err
}
// isWhitespace returns true if the byte slice contains only
// whitespace characters.
func isWhitespace(s string) bool {
for i := 0; i < len(s); i++ {
if c := s[i]; c != ' ' && c != '\t' && c != '\n' && c != '\r' {
return false
}
}
return true
}
// spaceMatch returns true if namespace a is the empty string
// or if namespace a equals namespace b.
func spaceMatch(a, b string) bool {
switch {
case a == "":
return true
default:
return a == b
}
}
// spaceDecompose breaks a namespace:tag identifier at the ':'
// and returns the two parts.
func spaceDecompose(str string) (space, key string) {
colon := strings.IndexByte(str, ':')
if colon == -1 {
return "", str
}
return str[:colon], str[colon+1:]
}
// Strings used by indentCRLF and indentLF
const (
indentSpaces = "\r\n "
indentTabs = "\r\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
)
// indentCRLF returns a CRLF newline followed by n copies of the first
// non-CRLF character in the source string.
func indentCRLF(n int, source string) string {
switch {
case n < 0:
return source[:2]
case n < len(source)-1:
return source[:n+2]
default:
return source + strings.Repeat(source[2:3], n-len(source)+2)
}
}
// indentLF returns a LF newline followed by n copies of the first non-LF
// character in the source string.
func indentLF(n int, source string) string {
switch {
case n < 0:
return source[1:2]
case n < len(source)-1:
return source[1 : n+2]
default:
return source[1:] + strings.Repeat(source[2:3], n-len(source)+2)
}
}
// nextIndex returns the index of the next occurrence of sep in s,
// starting from offset. It returns -1 if the sep string is not found.
func nextIndex(s, sep string, offset int) int {
switch i := strings.Index(s[offset:], sep); i {
case -1:
return -1
default:
return offset + i
}
}
// isInteger returns true if the string s contains an integer.
func isInteger(s string) bool {
for i := 0; i < len(s); i++ {
if (s[i] < '0' || s[i] > '9') && !(i == 0 && s[i] == '-') {
return false
}
}
return true
}
type escapeMode byte
const (
escapeNormal escapeMode = iota
escapeCanonicalText
escapeCanonicalAttr
)
// escapeString writes an escaped version of a string to the writer.
func escapeString(w XMLWriter, s string, m escapeMode) {
var esc []byte
last := 0
for i := 0; i < len(s); {
r, width := utf8.DecodeRuneInString(s[i:])
i += width
switch r {
case '&':
esc = []byte("&")
case '<':
esc = []byte("<")
case '>':
if m == escapeCanonicalAttr {
continue
}
esc = []byte(">")
case '\'':
if m != escapeNormal {
continue
}
esc = []byte("'")
case '"':
if m == escapeCanonicalText {
continue
}
esc = []byte(""")
case '\t':
if m != escapeCanonicalAttr {
continue
}
esc = []byte("	")
case '\n':
if m != escapeCanonicalAttr {
continue
}
esc = []byte("
")
case '\r':
if m == escapeNormal {
continue
}
esc = []byte("
")
default:
if !isInCharacterRange(r) || (r == 0xFFFD && width == 1) {
esc = []byte("\uFFFD")
break
}
continue
}
w.WriteString(s[last : i-width])
w.Write(esc)
last = i
}
w.WriteString(s[last:])
}
func isInCharacterRange(r rune) bool {
return r == 0x09 ||
r == 0x0A ||
r == 0x0D ||
r >= 0x20 && r <= 0xD7FF ||
r >= 0xE000 && r <= 0xFFFD ||
r >= 0x10000 && r <= 0x10FFFF
}