-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPython276tutorial-FunctionalProgramming.py
153 lines (117 loc) · 5.39 KB
/
Python276tutorial-FunctionalProgramming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#! /usr/bin/python
# In Python, and other languages, functions are "first class citizens":
# They are objects which can be treated as you would a variable or any other object
# (passed as argument to another function, returned by a function, and so on).
#
# A function which takes or returns a function is called a functional, or higher-order function
# (e.g. an integral takes a function as an argument).
#
# Use of these properties is called the functional programming paradigm.
#
# The origin for (and simplest instance of) a functional object is the labmda expression.
#http://docs.python.org/release/2.7.6/tutorial/
#==============================================
# 4.7.5 Lambda expressions (c.f. C function pointers)
# "Lambda expression" here is a small, anonymous function;
# used whenever a function is required to be represented as an object.
# Syntactically restricted to a single expression...
# Lambda expression returning unevaluated function object
add = lambda a,b: a+b
print add(1,2) # evaluate function object
argsList=[2,3]
print apply(add,argsList) # using non-essential 'apply()' function
# Lambda expresssion referrencing value from containing scope (like nested function definitions)
def make_incrementor(n):
return lambda x: x+n # given parameter 'n' and taking argument 'x', return the value 'x+n'
f=make_incrementor(42) # 'f' is now a function object with n=42
print "f(0)= ", f(0) # print the evaluated function for x=0
print "f(1)= ", f(1) # print the evaluated function for x=1
# Sort list according to a key, where the key is a lambda expression
pairs=[(1,'one'),(2,'two'),(3,'three'),(4,'four')]
print "Before sort: ", pairs
pairKey=lambda pair: pair[1] # Lambda expression which, given an object 'pair', returns the [1] element (i.e. the second elemnt in the tuple)
pairs.sort(key=pairKey) # Sort pairs according to the name of the number (i.e. alphabetically)
print "After sort: ", pairs
#==============================================
print
# 5.1.3 Functional programming (functional = higher-order function)
# Filter (aka C++ <algorithm> remove_copy_if() , etc.)
# Example: filter out Capital letters, punctuation marks, and spaces
stringEx="Hello World!"
print stringEx
def someBoolFunction(x):
return (ord(x) > 97) # is the ASCII value of the character x greater than 97?
print filter(someBoolFunction,stringEx) # returns only string, tuple or list (depending on input)
# Example: compute a sequence of numbers not divisible by 2 or 3
def notDiv2or3(x):
return (0 != x % 2) and (0 != x % 3)
print filter(notDiv2or3, range(2,25)) # recall that range is inclusive of 'from' argument and exclusive of 'to' argument
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# Map (aka C++ <algorithm> transform()
# Example: "do for each" return cube
def cube(x):
return x*x*x
print map(cube, range(1,10))
# Example: map multiple sequences (e.g. lists)
def add2(a,b):
## if int(a) and int(b): return a+b
## elif int(a): return a # i.e. ! int(b)
## else: return b # int(b) but ! int(a)
## if (type(a) is IntType) and (type(b) is IntType): return a+b # requires 'from types import *'
return a+b if (type(a)== type(b)) else 'undefined'
seq1=range(0,8)
seq2=range(-6,4) # note that len(seq2) > len(seq1)
print map(add2,seq1,seq2)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# Reduce (aka Fold, C++ <numeric> accumulate()
# see also python 3 'compose' and Haskell 'scan'
# serial composition of binary function (takes two arguments at a time) from left to right:
# leftFold(f;a,b,c,d) = f( f( f(a,b) ,c) ,d)
print "((2/3)/4)/5 = 1/30",
def div(x,y): return float(x)/float(y)
l=range(2,6)
print reduce(div,l)
# can take initial value argument:
print "((((1)/2)/3)/4)/5 = 1/120",
initVal=1
print reduce(div,l,initVal)
# rightFold(f;a,b,c,d) = f(a , f(b, f(c,d) ) )
print "2/(3/(4/5)) = 8/15",
def vid(x,y):
return div(y,x) # reverse function object
lRev=reversed(range(2,6)) # reverse argument list (compose d,c, then b, then a ...)
print reduce(vid,lRev)
# Example: sum numbers from 1 through 10 (inclusive)
def add(x,y): return x+y
print reduce(add,range(1,11))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# Example: Parralelization of search for all multiples of 'q' in the range [a:b]
# 1) Split range [a:b] to n sub-ranges.
# 2) MAP multiple-finding function to each sub-range, and execute in parallel.
# 3) REDUCE result lists back to a single list.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# Creating a list using functional programming
# specifically, using map()...
squaresLambda=map(lambda x: x**2, range(3))
print squaresLambda
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# 5.1.4 listcomp: List comprehension
# Concise way of creating a list in which each element is the result of some opperation, applied to each member of another sequence or iterable.
squaresExplicit=[] # create empty list
for x in range(3):
squaresExplicit.append(x**2)
print squaresExplicit
squaresListcomp=[x**2 for x in range(3)] #concise expression, using list compehension
print squaresListcomp
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print
# More complex list comprehension (more than one 'for' and additional 'if' clauses)
# For example, the sequence of subsequences of non-negative integers,
# such that each subsequence is shorter than 6 integers long (including zero)
seqOfsubSeq=[x for y in range(10) for x in range(y) if y<6]
print seqOfsubSeq