You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. I have searched related issues but cannot get the expected help.
2. The bug has not been fixed in the latest version.
3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
bad performance on model Molmo-7B-D-0924
Reproduction
python3 benchmark/profile_throughput.py /nvme/qa_test_models/datasets/ShareGPT_V3_unfiltered_cleaned_split.json /nvme/qa_test_models/allenai/Molmo-7B-D-0924 --concurrency 256 --num-prompts 5000 --tp 1
the result is
=================================== Profile Throughput ===================================
Benchmark duration 418.677
Total requests 3000
Successful requests 3000
Concurrency 256
Cancel rate 0
Stream output true
Skip tokenize false
Skip detokenize false
Total input tokens 680073
Total generated tokens 623970
Input throughput (tok/s) 1624.338
Output throughput (tok/s) 1490.337
Request throughput (req/s) 7.165
mean P50 P75 P95 P99
End-to-end Latency 34.174 35.039 36.022 38.719 40.092
Time to First Token (TTFT) 33.515 35.018 35.966 38.695 40.056
Time per Output Token (TPOT) 0.949 0.245 1.262 4.025 5.979
Inter-token Latency (ITL) 17.986 18.791 29.941 30.932 30.997
Tokens per Tick 200.633 129 313 642 798
Environment
sys.platform: linux
Python: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.5.1+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.20.1+cu118
LMDeploy: 0.7.0+df06ae3
transformers: 4.48.0
gradio: 5.12.0
fastapi: 0.115.6
pydantic: 2.10.5
triton: 3.1.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 0-27,56-83 0
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 28-55,84-111 1
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 28-55,84-111 1
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 28-55,84-111 1
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X 28-55,84-111 1
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
The text was updated successfully, but these errors were encountered:
Checklist
Describe the bug
bad performance on model Molmo-7B-D-0924
Reproduction
the result is
=================================== Profile Throughput ===================================
Benchmark duration 418.677
Total requests 3000
Successful requests 3000
Concurrency 256
Cancel rate 0
Stream output true
Skip tokenize false
Skip detokenize false
Total input tokens 680073
Total generated tokens 623970
Input throughput (tok/s) 1624.338
Output throughput (tok/s) 1490.337
Request throughput (req/s) 7.165
End-to-end Latency 34.174 35.039 36.022 38.719 40.092
Time to First Token (TTFT) 33.515 35.018 35.966 38.695 40.056
Time per Output Token (TPOT) 0.949 0.245 1.262 4.025 5.979
Inter-token Latency (ITL) 17.986 18.791 29.941 30.932 30.997
Tokens per Tick 200.633 129 313 642 798
Environment
Error traceback
The text was updated successfully, but these errors were encountered: