-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVAT_ASM_CFD.py
417 lines (336 loc) · 13.2 KB
/
VAT_ASM_CFD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import numpy as np
from numba import njit, prange
def meshing(n_elements, radius, grow_rate_x, grow_rate_y, limits_x, limits_y):
""" returns meshgrid as X and Y. It takes n_elements for the center turbine area and features
a linear grow rate until it reaches the corresponding min and max domain borders.
Args:
n_elements: n elements across turbine area
radius: turbine radius
grow_rate_x, grow_rate_y: linear grow rate for mesh
xmax ,xmin ,ymax, ymin: horizontal and vertical boundary coordinates
Returns:
x, y: one-dimesional vector of mesh coordinates
X, Y: 2D array meshgrid
nx, ny: number of mesh elements along each axis
dx, dy: smallest distance between mesh elements in the center area
grid_area: 2D array of the area around each node
"""
x = np.linspace(- radius, radius, num=n_elements, endpoint=True)
y = np.linspace(- radius, radius, num=n_elements, endpoint=True)
while x[-1] < limits_x[1]:
element = (x[-1] - x[-2]) * grow_rate_x
if x[-1] + 2 * element > limits_x[1]:
x = np.append(x, limits_x[1])
else:
x = np.append(x, x[-1] + element)
x = np.flip(x, axis=0)
while x[-1] > limits_x[0]:
element = (x[-1] - x[-2]) * grow_rate_x
if x[-1] + 2 * element < limits_x[0]:
x = np.append(x, limits_x[0])
else:
x = np.append(x, x[-1] + element)
x = np.flip(x, axis=0)
while y[-1] < limits_y[1]:
element = (y[-1] - y[-2]) * grow_rate_y
if y[-1] + 2 * element > limits_y[1]:
y = np.append(y, limits_y[1])
else:
y = np.append(y, y[-1] + element)
y = np.flip(y, axis=0)
while y[-1] > limits_y[0]:
element = (y[-1] - y[-2]) * grow_rate_y
if y[-1] + 2 * element < limits_y[0]:
y = np.append(y, limits_y[0])
else:
y = np.append(y, y[-1] + element)
y = np.flip(y, axis=0)
nx = len(x)
ny = len(y)
dx = np.min(x[1:-1] - x[0:-2])
dy = np.min(y[1:-1] - y[0:-2])
X, Y = np.meshgrid(x, y)
grid_area = np.ones((ny, nx))
grid_area[1:-1, 1:-1] = (X[1:-1, 1:-1] - X[1:-1, 0:-2]) * \
(Y[1:-1, 1:-1] - Y[0:-2, 1:-1])
return x, y, X, Y, nx, ny, dx, dy, grid_area
@njit(nopython=True, parallel=True)
def solve_pressure_poisson(p, u, v, nx, ny, dt, rho, X, Y):
""" solves pressure poisson equation on non-uniform grid
Args:
p: 2D pressure field from last step
u, v: velocity components
nx, ny: mesh element number
dt: time step
rho: density
SC: pre-calculated spatial distances
Returns:
p: pressure field
"""
pn = np.copy(p)
pn_grad = np.copy(p)
b = np.copy(p)
# prepare constant factor
for i in prange(1, ny - 1):
for j in range(1, nx - 1):
h1 = X[i, j] - X[i, j - 1]
h2 = X[i, j + 1] - X[i, j]
h3 = Y[i, j] - Y[i - 1, j]
h4 = Y[i + 1, j] - Y[i, j]
a = -h2 / (h1 * (h1 + h2))
y = h1 / (h2 * (h1 + h2))
c = -h4 / (h3 * (h3 + h4))
z = h3 / (h4 * (h3 + h4))
dudx = (a * u[i, j - 1] + (-a - y) * u[i, j] + y * u[i, j + 1])
dudy = (c * u[i - 1, j] + (-c - z) * u[i, j] + z * u[i + 1, j])
dvdx = (a * v[i, j - 1] + (-a - y) * v[i, j] + y * v[i, j + 1])
dvdy = (c * v[i - 1, j] + (-c - z) * v[i, j] + z * v[i + 1, j])
b[i, j] = rho * (1 / dt * (dudx + dvdy) - dudx **
2 - 2 * dudy * dvdx - dvdy**2)
# iterate for divergence free velocity field (incompressible) @max. 1000 interations.
# use the old solution of previous steps as a momentum term to accelerate
# the convergence.
for q in range(1, 1000):
for i in prange(0, ny):
for j in range(0, nx):
pn_grad[i, j] = p[i, j] - pn[i, j]
pn[i, j] = p[i, j]
# gauss-seidel in parallel. check later for proper convergence
for i in prange(1, ny - 1):
for j in range(1, nx - 1):
h1 = X[i, j] - X[i, j - 1]
h2 = X[i, j + 1] - X[i, j]
h3 = Y[i, j] - Y[i - 1, j]
h4 = Y[i + 1, j] - Y[i, j]
f = 2 / (h1 * (h1 + h2))
g = 2 / (h2 * (h1 + h2))
h = 2 / (h3 * (h3 + h4))
k = 2 / (h4 * (h3 + h4))
a = pn[i, j - 1]
c = pn[i, j + 1]
d = pn[i - 1, j]
e = pn[i + 1, j]
p[i, j] = (a * f + c * g + d * h + e *
k - b[i, j]) / (f + g + h + k) + 0.6 * pn_grad[i, j]
# break loop if residual is below threshold. Check every X iterations
if q % 10 == 0:
residual = 0
residual_max = 0
for i in range(1, ny - 1):
for j in range(1, nx - 1):
residual = abs(pn[i, j] - p[i, j])
if residual > residual_max:
residual_max = residual
if residual_max < 1: # < 1 Pa
break
# Pressure boundary condictions
# left wall
for i in range(0, ny):
p[i, 0] = p[i, 1] # Neumann
# right wall
for i in range(0, ny):
p[i, nx - 1] = p[i, nx - 2] # Neumann
# bottom wall
for j in range(0, nx):
p[0, j] = 0 # Dirichlet
# top wall
for j in range(0, nx):
p[ny - 1, j] = p[ny - 2, j] # Neumann
return p
@njit(nopython=True)
def apply_bc_closed(u, v, v0, nx, ny, use_tower, tower_mask, closed_sides=False):
""" apply boundary conditions for the closed (walled) flow field (free slip)
Args:
p: 2D pressure field from last step
u, v: velocity components
nx, ny: mesh element number
use_tower: user setting if tower is used
tower_mask: boolean mask to set velocity to zero
Returns:
u, v: velocity components
"""
# left column
for i in range(0, ny):
u[i, 0] = 0
v[i, 0] = v[i, 1]
# right column
for i in range(0, ny):
u[i, -1] = 0
v[i, -1] = v[i, -2]
# bottom row
for j in range(0, nx):
u[0, j] = u[1, j]
v[0, j] = v[1, j] # Neumann
# top row
for j in range(0, nx):
u[-1, j] = u[-2, j]
v[-1, j] = -v0
# tower correction
if use_tower == True:
u *= tower_mask
v *= tower_mask
return u, v
@njit(nopython=True)
def apply_bc(u, v, v0, nx, ny, use_tower, tower_mask, closed_sides=False):
""" apply boundary conditions for the flow field. The user can decide
whether the side walls let fluid pass through or behave like a channel.
Args:
p: 2D pressure field from last step
u, v: velocity components
nx, ny: mesh element number
use_tower: user setting if tower is used
tower_mask: boolean mask to set velocity to zero
closed_sides: sets u velocity component to zero at the walls if true
Returns:
u, v: velocity components
"""
if closed_sides == False:
# left column
for i in range(0, ny):
u[i, 0] = u[i, 1]
v[i, 0] = v[i, 1]
# right column
for i in range(0, ny):
u[i, -1] = u[i, -2]
v[i, -1] = v[i, -2]
else:
# left column
for i in range(0, ny):
u[i, 0] = 0
v[i, 0] = v[i, 1]
# right column
for i in range(0, ny):
u[i, -1] = 0
v[i, -1] = v[i, -2]
# bottom row
for j in range(0, nx):
u[0, j] = u[1, j]
v[0, j] = v[1, j] # Neumann
# top row
for j in range(0, nx):
u[-1, j] = u[-2, j]
v[-1, j] = -v0
# tower correction
if use_tower == True:
for i in prange(0, ny):
for j in range(0, nx):
u[i, j] *= tower_mask[i, j]
v[i, j] *= tower_mask[i, j]
return u, v
@njit(nopython=True, parallel=True)
def solve_momentum(dudt, dvdt, u, v, dx, dy, nx, ny, p, rho, nu, X, Y):
""" Solves Navier-Stokes momentum equation on non-uniform grid
Args:
p: 2D pressure field from last step
u, v: velocity components
nx, ny: mesh element number
use_tower: user setting if tower is used
tower_mask: boolean mask to set velocity to zero
Returns:
u, v: velocity components
"""
# low order derivatives for the elements next to a boundary
def first_order(i, j):
h1 = X[i, j] - X[i, j - 1]
h2 = X[i, j + 1] - X[i, j]
h3 = Y[i, j] - Y[i - 1, j]
h4 = Y[i + 1, j] - Y[i, j]
a = -h2 / (h1 * (h1 + h2))
y = h1 / (h2 * (h1 + h2))
c = -h4 / (h3 * (h3 + h4))
z = h3 / (h4 * (h3 + h4))
a2 = 2 / (h1 * (h1 + h2))
y2 = 2 / (h2 * (h1 + h2))
b2 = 2 / (h3 * (h3 + h4))
z2 = 2 / (h4 * (h3 + h4))
if u[i, j] >= 0:
dudx = (u[i, j] - u[i, j - 1]) / h1
dvdx = (v[i, j] - v[i, j - 1]) / h1
else:
dudx = (u[i, j + 1] - u[i, j]) / h2
dvdx = (v[i, j + 1] - v[i, j]) / h2
if v[i, j] >= 0:
dudy = (u[i, j] - u[i - 1, j]) / h3
dvdy = (v[i, j] - v[i - 1, j]) / h3
else:
dudy = (u[i + 1, j] - u[i, j]) / h4
dvdy = (v[i + 1, j] - v[i, j]) / h4
dpdx = (a * p[i, j - 1] + (-a - y) * p[i, j] + y * p[i, j + 1])
dpdy = (c * p[i - 1, j] + (-c - z) * p[i, j] + z * p[i + 1, j])
d2udx = (a2 * u[i, j - 1] + (-a2 - y2) * u[i, j] + y2 * u[i, j + 1])
d2udy = (b2 * u[i - 1, j] + (-b2 - z2) * u[i, j] + z2 * u[i + 1, j])
d2vdx = (a2 * v[i, j - 1] + (-a2 - y2) * v[i, j] + y2 * v[i, j + 1])
d2vdy = (b2 * v[i - 1, j] + (-b2 - z2) * v[i, j] + z2 * v[i + 1, j])
dudt[i, j] = (-u[i, j] * dudx - v[i, j] * dudy -
1 / rho * dpdx + nu * (d2udx + d2udy))
dvdt[i, j] = (-u[i, j] * dvdx - v[i, j] * dvdy -
1 / rho * dpdy + nu * (d2vdx + d2vdy))
# higher order derivatives for the elements inside the domain
def second_order(i, j):
h1 = X[i, j] - X[i, j - 1]
h11 = X[i, j] - X[i, j - 2]
h2 = X[i, j + 1] - X[i, j]
h22 = X[i, j + 2] - X[i, j]
h3 = Y[i, j] - Y[i - 1, j]
h33 = Y[i, j] - Y[i - 2, j]
h4 = Y[i + 1, j] - Y[i, j]
h44 = Y[i + 2, j] - Y[i, j]
if u[i, j] >= 0:
a = -h11 / (h1 * (h11 - h1))
y = h1 / (h11 * (h11 - h1))
b = - a - y
dudx = b * u[i, j] + a * u[i, j - 1] + y * u[i, j - 2]
dvdx = b * v[i, j] + a * v[i, j - 1] + y * v[i, j - 2]
else:
a = -h22 / (h2 * (h2 - h22))
y = h2 / (h22 * (h2 - h22))
b = - a - y
dudx = b * u[i, j] + a * u[i, j + 1] + y * u[i, j + 2]
dvdx = b * v[i, j] + a * v[i, j + 1] + y * v[i, j + 2]
if v[i, j] >= 0:
a = h33 / (-h3 * (-h3 + h33))
y = h3 / (h33 * (-h3 + h33))
b = - a - y
dudy = b * u[i, j] + a * u[i - 1, j] + y * u[i - 2, j]
dvdy = b * v[i, j] + a * v[i - 1, j] + y * v[i - 2, j]
else:
a = h44 / (-h4 * (-h4 + h44))
y = h4 / (h44 * (-h4 + h44))
b = - a - y
dudy = u[i + 2, j] * -y + u[i + 1, j] * -a + u[i, j] * -b
dvdy = v[i + 2, j] * -y + v[i + 1, j] * -a + v[i, j] * -b
a = -h2 / (h1 * (h1 + h2))
y = h1 / (h2 * (h1 + h2))
c = -h4 / (h3 * (h3 + h4))
z = h3 / (h4 * (h3 + h4))
a2 = 2 / (h1 * (h1 + h2))
y2 = 2 / (h2 * (h1 + h2))
b2 = 2 / (h3 * (h3 + h4))
z2 = 2 / (h4 * (h3 + h4))
dpdx = (a * p[i, j - 1] + (-a - y) * p[i, j] + y * p[i, j + 1])
dpdy = (c * p[i - 1, j] + (-c - z) * p[i, j] + z * p[i + 1, j])
d2udx = (a2 * u[i, j - 1] + (-a2 - y2) * u[i, j] + y2 * u[i, j + 1])
d2udy = (b2 * u[i - 1, j] + (-b2 - z2) * u[i, j] + z2 * u[i + 1, j])
d2vdx = (a2 * v[i, j - 1] + (-a2 - y2) * v[i, j] + y2 * v[i, j + 1])
d2vdy = (b2 * v[i - 1, j] + (-b2 - z2) * v[i, j] + z2 * v[i + 1, j])
dudt[i, j] = (-u[i, j] * dudx - v[i, j] * dudy -
1 / rho * dpdx + nu * (d2udx + d2udy))
dvdt[i, j] = (-u[i, j] * dvdx - v[i, j] * dvdy -
1 / rho * dpdy + nu * (d2vdx + d2vdy))
# left column
for i in range(1, ny - 1):
first_order(i, 1)
# right column
for i in range(1, ny - 1):
first_order(i, nx - 2)
# bottom row
for j in range(1, nx - 1):
first_order(1, j)
# top row
for j in range(1, nx - 1):
first_order(ny - 2, j)
# inner Domain
for i in prange(2, ny - 2):
for j in range(2, nx - 2):
second_order(i, j)
return dudt, dvdt