-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVAT_ASM_Main.py
243 lines (195 loc) · 9.49 KB
/
VAT_ASM_Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
from matplotlib import pyplot, cm
import matplotlib.pyplot as plt
from numba import njit, prange
import configparser
from scipy import interpolate
import time
from VAT_ASM_CFD import meshing, solve_pressure_poisson, apply_bc, solve_momentum
from VAT_ASM_BEM import VAT_BEM
from VAT_ASM_Misc import airfoil_data_parser, circular_mask, colorbar
# load config file with user settings
config = configparser.ConfigParser(inline_comment_prefixes='#')
#config.read('config/VAWT850.ini')
# config.read('config/UNHRVAT.ini')
config.read('config/RM2.ini')
def main():
# global mesh settings with linear grow rate and constant-length center area
n_elements = int(config['mesh settings']['n_elements'])
radius = float(config['VAWT parameters']['radius'])
# limits of the domain
limits_x = np.array(config['mesh settings']['limits_x'].split(","), dtype=np.float64)
limits_y = np.array(config['mesh settings']['limits_y'].split(","), dtype=np.float64)
# linear grow from center area
grow_rate_x = float(config['mesh settings']['grow_rate_x'])
grow_rate_y = float(config['mesh settings']['grow_rate_y'])
# start meshing the domain
mesh = meshing(n_elements, radius, grow_rate_x, grow_rate_y, limits_x, limits_y)
x, y, X, Y, nx, ny, dx, dy, grid_area = mesh
print(str(nx) + " x " + str(ny) + " = " + str(nx * ny) + " mesh nodes")
# load airfoil data from files
airfoil = airfoil_data_parser()
# fluid parameters
rho = float(config['fluid parameters']['rho']) # kg/m^3 density
nu = float(config['fluid parameters']['nu']) # m^2/s kinematic viscosity
# simulation parameters
u_vawt = np.array(config['simulation']['u_vawt'].split(","), dtype=np.float64)
v0 = np.array(config['simulation']['v0'].split(","), dtype=np.float64)
Tmax = np.array(config['simulation']['T'].split(","), dtype=np.float64)
try:
TSR_all = u_vawt / v0
except:
raise ValueError("lists for T, TSR and u_vawt need to have the same length")
print("TSR: " + str(TSR_all))
# begin simulation
sim_results = np.zeros((len(TSR_all), 3))
starttime = time.time()
for i, TSR in enumerate(TSR_all):
# instance VAWT class
VAWT = VAT_BEM(v0[i], u_vawt[i], rho, nu, mesh, airfoil, config)
sim_results[i, 0] = TSR
# save results
sim_results[i, 1], sim_results[i, 2] = VAT_Flow(Tmax[i], rho, nu, v0[i], VAWT, mesh)
np.savetxt("sim_results.txt", sim_results)
print("TSR [-] c_p [-] Struts [Nm]")
print(sim_results)
print("simulation. time: {0:1.6f}s ".format(time.time() - starttime))
def VAT_Flow(Tmax, rho, nu, v0, VAWT, mesh):
# unpack mesh info
x, y, X, Y, nx, ny, dx, dy, grid_area = mesh
# reset simulation data
dt_f = float(config['simulation']['dt_f'])
use_tower = int(config['VAWT parameters']['tower'])
tower_mask = 1 - circular_mask(nx, ny, radius=float(config['VAWT parameters']['tower_width']) / 2)
closed_sides = int(config['VAWT parameters']['closed_sides'])
u = np.zeros((ny, nx))
v = np.zeros((ny, nx)) - v0
p = np.zeros((ny, nx))
# prepare plot
fig, (ax, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(16, 5))
fig.canvas.manager.set_window_title('VAT-ASM')
plt.rc('axes', axisbelow=True)
fig.set_tight_layout(True)
plt.show()
# prepare empty arrays
un = np.copy(u)
vn = np.copy(v)
dudt = np.copy(u)
dvdt = np.copy(v)
dudt2 = np.copy(u)
dvdt2 = np.copy(v)
plot_data = np.zeros((2000, 3))
reflow_detected = False
T, n = 0, 0
while T <= Tmax:
# get timings from latest iteration
start_time = time.time()
# non-adaptive timestep controls by enforcing CFL condition. Adaptive timestepping is removed currently
dt = dt_f * (dx / VAWT.u_vawt)
# Ralston's method
un = u
vn = v
apply_bc(un, vn, v0, nx, ny, use_tower, tower_mask, closed_sides)
solve_pressure_poisson(p, un, vn, nx, ny, dt, rho, X, Y)
solve_momentum(dudt, dvdt, un, vn, dx, dy, nx, ny, p, rho, nu, X, Y)
dudt, dvdt = VAWT.get_acceleration(T, dudt, dvdt, un, vn, 1, dt, mesh)
# correct
un = u + 2 / 3 * dt * dudt
vn = v + 2 / 3 * dt * dvdt
apply_bc(un, vn, v0, nx, ny, use_tower, tower_mask, closed_sides)
solve_pressure_poisson(p, un, vn, nx, ny, 2 / 3 * dt, rho, X, Y)
solve_momentum(dudt2, dvdt2, un, vn, dx, dy, nx, ny, p, rho, nu, X, Y)
dudt2, dvdt2 = VAWT.get_acceleration(T + 2 / 3 * dt, dudt2,dvdt2, un, vn, 2, dt, mesh)
# merge
u = u + dt * (1 / 4 * dudt + 3 / 4 * dudt2)
v = v + dt * (1 / 4 * dvdt + 3 / 4 * dvdt2)
# detect reflow into the domain from the bottom. Build wall if necessary
if np.max(v[0, :]) > 0:
v[0, :] = np.where(v[0, :] > 0, v[0, :] * 0, v[0, :])
reflow_detected = True
T = T + dt
# update plot every X timesteps. Plotting slows down performance
# considerably
if np.mod(n, int(config['plot settings']['n_plot'])) == 0 or T >= Tmax:
# show mean values
print("--- step " + str(n) + " finished ---")
print("calc. time: {0:1.6f}s ".format(time.time() - start_time))
print("sim. time: {0:3.2f}s".format(T))
print("timestep: {0:1.6f}s".format(dt))
P = np.mean(np.sum(VAWT.P, axis=1))
print("power: {0:3.2f}W".format(P))
plot_data = np.roll(plot_data, 1, axis=0)
plot_data[0, 0] = n
plot_data[0, 1] = np.mean(np.sum(VAWT.eta, axis=1)) * 100
plot_data[0, 2] = np.mean(np.sum(VAWT.torque_struts, axis=1))
print("cp: {0:2.2f}%".format(plot_data[0, 1]))
print("struts : {0:2.2f}Nm".format(plot_data[0, 2]))
# project solution for aquidistant grid for plotting
fu = interpolate.interp2d(x, y, u, kind='linear')
fv = interpolate.interp2d(x, y, v, kind='linear')
# fp = interpolate.interp2d(x, y, p, kind='linear') # pressure
xnew = np.arange(np.min(x), np.max(x), dx)
ynew = np.arange(np.min(y), np.max(y), dy)
unew = fu(xnew, ynew)
vnew = fv(xnew, ynew)
# pnew = fp(xnew,ynew)
plt.subplot(131)
im = plt.pcolormesh(xnew,ynew,np.sqrt(unew**2 +vnew**2),alpha=1,vmin=0,
vmax=v0 * 1.6, cmap=cm.inferno, shading='auto')
# im = plt.pcolormesh(xnew, ynew, pnew , alpha=1, cmap=cm.inferno,vmin=-900,vmax=900) # show pressure
# im = plt.pcolormesh(xnew, ynew, Wnew , alpha=1, cmap=cm.inferno,vmin=0,vmax=0.1) # show weights
cbar = colorbar(im)
cbar.ax.set_title('$v$[m/s]')
plt.xlabel('X [m]')
plt.ylabel('Y [m]')
# user plot limits
limits_x = np.array(config['plot settings']['limits_x'].split(","), dtype=np.float64)
limits_y = np.array(config['plot settings']['limits_y'].split(","), dtype=np.float64)
plt.xlim((limits_x[0], limits_x[1]))
plt.ylim((limits_y[0], limits_y[1]))
# mesh lines
show_grid = int(config['plot settings']['show_grid'])
if show_grid == True:
plt.plot(X, Y, c="black", linewidth=0.2)
plt.plot(X.T, Y.T, c="black", linewidth=0.2)
# streamlines or velocity arrows. Very slow!
# plt.quiver(X[30:-30,30:-30], Y[30:-30,30:-30], u[30:-30,30:-30], v[30:-30,30:-30],color = "white")
# plt.streamplot(xnew, ynew, unew, vnew,color="white",density = 3)
# lift and drag plot
plt.subplot(132)
plt.grid()
for blade in range(0, VAWT.z_blades):
plt.scatter(np.rad2deg(VAWT.alpha_A[:, blade]), VAWT.cl[:, blade])
# plt.scatter(np.rad2deg(VAWT.alpha_A[:,blade]),VAWT.cd[:,blade])
# plt.xlim((np.min(np.rad2deg(VAWT.alpha_A[:,0])),np.max(np.rad2deg(VAWT.alpha_A[:,0]))))
plt.ylim((-2.2, 2.2))
plt.ylabel('Lift Coefficient, $c_l$')
plt.xlabel('Angle of Attack, α [deg]')
# # show wake velocity profile behind turbine
# plt.subplot(132)
# y_wake = np.where(y <= -50)[0][-1] # not exact
# plt.plot(x,-v[y_wake,:])
# plt.ylabel('Velocity, $v_y [m/s]$')
# plt.xlabel('X [m]')
# eta over time
plt.subplot(133)
plt.grid()
plt.scatter(plot_data[:, 0], plot_data[:, 1], c="black")
plt.xlabel('Iterations')
plt.ylabel('Turbine Efficiency, $c_p$')
# plot torque over phi
# plt.subplot(133)
# plt.scatter(np.rad2deg(VAWT.phi[:,0]),VAWT.Torque[:,0],c="red", vmin=-2, vmax=2)
# plt.scatter(np.rad2deg(VAWT.phi[:,1]),VAWT.Torque[:,1],c="blue", vmin=-2, vmax=2)
if reflow_detected:
print("reflow detected: placing walls")
reflow_detected = False
if T < Tmax:
fig.canvas.draw()
fig.canvas.flush_events()
# pyplot.cla()
pyplot.clf()
n = n + 1
return plot_data[0, 1], plot_data[0, 2]
if __name__ == '__main__':
main()