forked from bbrattoli/JigsawPuzzlePytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselect_permutations.py
48 lines (38 loc) · 1.44 KB
/
select_permutations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 14 15:50:28 2017
@author: bbrattol
"""
import argparse
from tqdm import trange
import numpy as np
import itertools
from scipy.spatial.distance import cdist
parser = argparse.ArgumentParser(description='Train network on Imagenet')
parser.add_argument('--classes', default=1000, type=int,
help='Number of permutations to select')
parser.add_argument('--selection', default='max', type=str,
help='Sample selected per iteration based on hamming distance: [max] highest; [mean] average')
args = parser.parse_args()
if __name__ == "__main__":
outname = 'permutations/permutations_hamming_%s_%d'%(args.selection,args.classes)
P_hat = np.array(list(itertools.permutations(list(range(9)), 9)))
n = P_hat.shape[0]
for i in trange(args.classes):
if i==0:
j = np.random.randint(n)
P = np.array(P_hat[j]).reshape([1,-1])
else:
P = np.concatenate([P,P_hat[j].reshape([1,-1])],axis=0)
P_hat = np.delete(P_hat,j,axis=0)
D = cdist(P,P_hat, metric='hamming').mean(axis=0).flatten()
if args.selection=='max':
j = D.argmax()
else:
m = int(D.shape[0]/2)
S = D.argsort()
j = S[np.random.randint(m-10,m+10)]
if i%100==0:
np.save(outname,P)
np.save(outname,P)
print('file created --> '+outname)