-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataset.py
92 lines (65 loc) · 2.37 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import cv2
import random
import numpy as np
import torch
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class FoldDataset(Dataset):
def __init__(self, imgs_dir, idx, permutations, in_channels=1):
super(FoldDataset, self).__init__()
self.imgs_dir = imgs_dir
self.idx = idx
self.in_channels = in_channels
self.permutations = permutations # list
def __len__(self):
return len(self.idx)
def __getitem__(self, i):
img_path = os.path.join(self.imgs_dir, self.idx[i])
if self.in_channels > 1:
img = cv2.imread(img_path)
else:
img = cv2.imread(img_path, 0)
label = random.randint(0, 999)
img = cv2.resize(img, (225, 225), cv2.INTER_LINEAR)
# C * H * W
if self.in_channels == 1:
img = img[np.newaxis, :]
else:
img = img.transpose(2, 0, 1)
imgclips = []
for i in range(3):
for j in range(3):
clip = img[:, i * 75: (i + 1) * 75, j * 75: (j + 1) * 75]
randomx = random.randint(0, 10)
randomy = random.randint(0, 10)
clip = clip[:, randomx: randomx+64, randomy:randomy+64]
imgclips.append(clip)
imgclips = [imgclips[item] for item in self.permutations[label]]
imgclips = np.array(imgclips)
return img, torch.from_numpy(imgclips) / 255.0, torch.tensor(label)
if __name__ == '__main__':
path = ''
permutations = np.load('permutations.npy').tolist()
dataset = FoldDataset(path, os.listdir(path), permutations, in_channels=1)
dataloader = DataLoader(dataset, batch_size=1, num_workers=8, pin_memory=True, shuffle=True)
for batch in dataloader:
ii, inputs, labels = batch
plt.figure()
for i in range(9):
plt.subplot(331+i)
img = inputs[0, i, 0, ...].numpy()
plt.imshow(img, cmap='gray')
plt.show()
print(permutations[labels[0]])
plt.figure()
for i in range(9):
plt.subplot(331 + permutations[labels[0]][i])
img = inputs[0, i, 0, ...].numpy()
plt.imshow(img, cmap='gray')
plt.show()
plt.figure()
plt.imshow(ii.squeeze().numpy(), cmap='gray')
plt.show()
break