-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathnet.py
287 lines (263 loc) · 10.7 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from function import calc_mean_std, nor_mean_std, nor_mean, calc_cov
import random
decoder = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 256, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)), # decoder_pho starts layer
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 128, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 64, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 3, (3, 3)),
)
vgg = nn.Sequential(
nn.Conv2d(3, 3, (1, 1)),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(3, 64, (3, 3)),
nn.ReLU(), # relu1-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(), # relu1-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 128, (3, 3)),
nn.ReLU(), # relu2-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(), # relu2-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 256, (3, 3)),
nn.ReLU(), # relu3-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 512, (3, 3)),
nn.ReLU(), # relu4-1, this is the last layer used
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU() # relu5-4
)
mlp = nn.ModuleList([nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 16),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 32),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 64),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 128)])
class SCT(nn.Module):
def __init__(self, training_mode='art'):
super(SCT, self).__init__()
if training_mode == 'art':
self.cnet = nn.Sequential(nn.Conv2d(512,256,1,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(256,128,1,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(128,32,1,1,0))
self.snet = nn.Sequential(nn.Conv2d(512,256,3,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(256,128,3,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(128,32,1,1,0))
self.uncompress = nn.Conv2d(32,512,1,1,0)
else: # pho
self.cnet = nn.Sequential(nn.Conv2d(256,128,1,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(128,32,1,1,0))
self.snet = nn.Sequential(nn.Conv2d(256,128,3,1,0),
nn.ReLU(inplace=True),
nn.Conv2d(128,32,1,1,0))
self.uncompress = nn.Conv2d(32,256,1,1,0)
def forward(self, content, style):
cF_nor = nor_mean_std(content)
sF_nor, smean = nor_mean(style)
cF = self.cnet(cF_nor)
sF = self.snet(sF_nor)
b, c, w, h = cF.size()
s_cov = calc_cov(sF)
gF = torch.bmm(s_cov, cF.flatten(2, 3)).view(b,c,w,h)
gF = self.uncompress(gF)
gF = gF + smean.expand(cF_nor.size())
return gF
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm + 1e-7)
return out
class CCPL(nn.Module):
def __init__(self, mlp):
super(CCPL, self).__init__()
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.mlp = mlp
def NeighborSample(self, feat, layer, num_s, sample_ids=[]):
b, c, h, w = feat.size()
feat_r = feat.permute(0, 2, 3, 1).flatten(1, 2)
if sample_ids == []:
dic = {0: -(w+1), 1: -w, 2: -(w-1), 3: -1, 4: 1, 5: w-1, 6: w, 7: w+1}
s_ids = torch.randperm((h - 2) * (w - 2), device=feat.device) # indices of top left vectors
s_ids = s_ids[:int(min(num_s, s_ids.shape[0]))]
ch_ids = (s_ids // (w - 2) + 1) # centors
cw_ids = (s_ids % (w - 2) + 1)
c_ids = (ch_ids * w + cw_ids).repeat(8)
delta = [dic[i // num_s] for i in range(8 * num_s)]
delta = torch.tensor(delta).to(feat.device)
n_ids = c_ids + delta
sample_ids += [c_ids]
sample_ids += [n_ids]
else:
c_ids = sample_ids[0]
n_ids = sample_ids[1]
feat_c, feat_n = feat_r[:, c_ids, :], feat_r[:, n_ids, :]
feat_d = feat_c - feat_n
for i in range(3):
feat_d =self.mlp[3*layer+i](feat_d)
feat_d = Normalize(2)(feat_d.permute(0,2,1))
return feat_d, sample_ids
## PatchNCELoss code from: https://github.com/taesungp/contrastive-unpaired-translation
def PatchNCELoss(self, f_q, f_k, tau=0.07):
# batch size, channel size, and number of sample locations
B, C, S = f_q.shape
###
f_k = f_k.detach()
# calculate v * v+: BxSx1
l_pos = (f_k * f_q).sum(dim=1)[:, :, None]
# calculate v * v-: BxSxS
l_neg = torch.bmm(f_q.transpose(1, 2), f_k)
# The diagonal entries are not negatives. Remove them.
identity_matrix = torch.eye(S,dtype=torch.bool)[None, :, :].to(f_q.device)
l_neg.masked_fill_(identity_matrix, -float('inf'))
# calculate logits: (B)x(S)x(S+1)
logits = torch.cat((l_pos, l_neg), dim=2) / tau
# return PatchNCE loss
predictions = logits.flatten(0, 1)
targets = torch.zeros(B * S, dtype=torch.long).to(f_q.device)
return self.cross_entropy_loss(predictions, targets)
def forward(self, feats_q, feats_k, num_s, start_layer, end_layer, tau=0.07):
loss_ccp = 0.0
for i in range(start_layer, end_layer):
f_q, sample_ids = self.NeighborSample(feats_q[i], i, num_s, [])
f_k, _ = self.NeighborSample(feats_k[i], i, num_s, sample_ids)
loss_ccp += self.PatchNCELoss(f_q, f_k, tau)
return loss_ccp
class Net(nn.Module):
def __init__(self, encoder, decoder, training_mode='art'):
super(Net, self).__init__()
enc_layers = list(encoder.children())
self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1
self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1
self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1
self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1
self.decoder = decoder
self.SCT = SCT(training_mode)
self.mlp = mlp if training_mode == 'art' else mlp[:9]
self.CCPL = CCPL(self.mlp)
self.mse_loss = nn.MSELoss()
self.end_layer = 4 if training_mode == 'art' else 3
self.mode = training_mode
# fix the encoder
for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4']:
for param in getattr(self, name).parameters():
param.requires_grad = False
# extract relu1_1, relu2_1, relu3_1, relu4_1 from input image
def encode_with_intermediate(self, input):
results = [input]
for i in range(self.end_layer):
func = getattr(self, 'enc_{:d}'.format(i + 1))
results.append(func(results[-1]))
return results[1:]
# extract relu4_1 from input image
def encode(self, input):
for i in range(self.end_layer):
input = getattr(self, 'enc_{:d}'.format(i + 1))(input)
return input
def feature_compress(self, feat):
feat = feat.flatten(2,3)
feat = self.mlp(feat)
feat = feat.flatten(1,2)
feat = Normalize(2)(feat)
return feat
def calc_content_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
return self.mse_loss(input, target)
def calc_style_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
input_mean, input_std = calc_mean_std(input)
target_mean, target_std = calc_mean_std(target)
return self.mse_loss(input_mean, target_mean) + \
self.mse_loss(input_std, target_std)
def forward(self, content, style, tau, num_s, num_layer):
style_feats = self.encode_with_intermediate(style)
content_feats = self.encode_with_intermediate(content)
gF = self.SCT(content_feats[-1], style_feats[-1])
gimage = self.decoder(gF)
g_t_feats = self.encode_with_intermediate(gimage)
end_layer = self.end_layer
loss_c = self.calc_content_loss(g_t_feats[-1], content_feats[-1])
loss_s = self.calc_style_loss(g_t_feats[0], style_feats[0])
for i in range(1, end_layer):
loss_s += self.calc_style_loss(g_t_feats[i], style_feats[i])
start_layer = end_layer - num_layer
loss_ccp = self.CCPL(g_t_feats, content_feats, num_s, start_layer, end_layer)
return loss_c, loss_s, loss_ccp