-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils.py
94 lines (82 loc) · 2.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from __future__ import division
import os
import cv2
import time
import torch
import scipy.misc
import numpy as np
import scipy.sparse
from PIL import Image
import scipy.sparse.linalg
# from cv2.ximgproc import jointBilateralFilter
# from torch.utils.serialization import load_lua
from numpy.lib.stride_tricks import as_strided
def whiten(cF):
cFSize = cF.size()
c_mean = torch.mean(cF,1) # c x (h x w)
c_mean = c_mean.unsqueeze(1).expand_as(cF)
cF = cF - c_mean
contentConv = torch.mm(cF,cF.t()).div(cFSize[1]-1) + torch.eye(cFSize[0]).double()
c_u,c_e,c_v = torch.svd(contentConv,some=False)
k_c = cFSize[0]
for i in range(cFSize[0]):
if c_e[i] < 0.00001:
k_c = i
break
c_d = (c_e[0:k_c]).pow(-0.5)
step1 = torch.mm(c_v[:,0:k_c],torch.diag(c_d))
step2 = torch.mm(step1,(c_v[:,0:k_c].t()))
whiten_cF = torch.mm(step2,cF)
return whiten_cF
def numpy2cv2(cont,style,prop,width,height):
cont = cont.transpose((1,2,0))
cont = cont[...,::-1]
cont = cont * 255
cont = cv2.resize(cont,(width,height))
#cv2.resize(iimg,(width,height))
style = style.transpose((1,2,0))
style = style[...,::-1]
style = style * 255
style = cv2.resize(style,(width,height))
prop = prop.transpose((1,2,0))
prop = prop[...,::-1]
prop = prop * 255
prop = cv2.resize(prop,(width,height))
#return np.concatenate((cont,np.concatenate((style,prop),axis=1)),axis=1)
return prop,cont
def makeVideo(content,style,props,outf):
print('Stack transferred frames back to video...')
layers,height,width = content[0].shape
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(os.path.join(outf,'transfer.avi'),fourcc,10.0,(width,height))
ori_video = cv2.VideoWriter(os.path.join(outf,'content.avi'),fourcc,10.0,(width,height))
for j in range(len(content)):
prop,cont = numpy2cv2(content[j],style,props[j],width,height)
cv2.imwrite('prop.png',prop)
cv2.imwrite('content.png',cont)
imgj = cv2.imread('prop.png')
imgc = cv2.imread('content.png')
video.write(imgj)
ori_video.write(imgc)
# RGB or BRG, yuks
video.release()
ori_video.release()
os.remove('prop.png')
os.remove('content.png')
print('Transferred video saved at %s.'%outf)
def print_options(opt):
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.outf)
os.makedirs(expr_dir,exist_ok=True)
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')